HOMEWORK 1 DUE SEPTEMBER 15

(1) Endow the cross

+

with the subspace topology in \mathbb{R}^2 (meaning that a set $U \subset +$ is open if and only if it is the intersection of an open set $\tilde{U} \subset \mathbb{R}^2$ with $+ \in \mathbb{R}^2$). Show that the cross is not locally Euclidean.

(2) Endow

V

with the subspace topology in \mathbb{R}^2 . (For concreteness, you can think of this space as the graph of the function $x \mapsto |x|$.) Is \bigvee a topological manifold? Is it a smooth manifold? (You must provide justification to receive full credit.)

(3) Suppose that $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in I}$ and $\{(V_{\beta}, \psi_{\beta})\}_{\beta \in J}$ are smooth atlases for manifolds M, N of dimensions m, n respectively. Show that

$$\{(U_{\alpha} \times V_{\beta}, \phi_{\alpha} \times \psi_{\beta})\}_{\alpha, \beta \in I \times J}$$

is a smooth atlas for the product space $M \times N$. Hence, $M \times N$ is a smooth manifold of dimension m + n.