HOMEWORK 10

NOT TO TURN IN
(1) Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis for \mathbf{R}^{3}. Show that $e_{1} \otimes e_{2} \otimes e_{3} \in \mathbf{R}^{3} \otimes \mathbf{R}^{3} \otimes \mathbf{R}^{3}$ is not equal to the sum of a completely anti-symmetric plus a completely symmetric three-tensor.
(2) Let $\omega \in \Omega^{1}(M)$ and $X, Y \in \operatorname{Vect}(M)$. Show that the two-form $\mathrm{d} \omega \in \Omega^{2}(M)$ satisfies

$$
\begin{equation*}
\mathrm{d} \omega(X, Y)=X(\omega(Y))-Y(\omega(X))-\omega([X, Y]) \tag{1}
\end{equation*}
$$

(3) Given a k-form $\omega \in \Omega^{k}(M)$ and a vector field $X \in \operatorname{Vect}(M)$ define the k-form $L_{X} \omega \in \Omega^{k}(M)$ by the formula

$$
\begin{equation*}
\left.\left.\left(L_{X} \omega\right)\right|_{p} \stackrel{\text { def }}{=} \frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(\theta_{t}^{*} \omega\right)_{p} \tag{2}
\end{equation*}
$$

where θ_{t} is the flow with respect to X (in particular, θ_{t} is a diffeomorphism from a neighborhood of p to a neighborhood of $\theta_{t}(p)$. This is called the Lie derivative of ω with respect to X.

Let $\omega \in \Omega^{2}\left(\mathbf{R}^{4}\right)$ be the two-form

$$
\begin{equation*}
\omega=x \mathrm{~d} y+z \mathrm{~d} w, \tag{3}
\end{equation*}
$$

(where we use coordinates (x, y, z, w) for \mathbf{R}^{4}) and let X be the vector field

$$
\begin{equation*}
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}+w \frac{\partial}{\partial w} \tag{4}
\end{equation*}
$$

(a) Compute $L_{X} \omega$ in this example.
(b) Show by direct computation that

$$
\begin{equation*}
L_{X} \omega=\mathrm{d} \iota_{X} \omega+\iota_{X} \mathrm{~d} \omega, \tag{5}
\end{equation*}
$$

