HOMEWORK 10 NOT TO TURN IN

- (1) Let $\{e_1, e_2, e_3\}$ be a basis for \mathbb{R}^3 . Show that $e_1 \otimes e_2 \otimes e_3 \in \mathbb{R}^3 \otimes \mathbb{R}^3 \otimes \mathbb{R}^3$ is not equal to the sum of a completely anti-symmetric plus a completely symmetric three-tensor.
- (2) Let $\omega \in \Omega^1(M)$ and $X, Y \in Vect(M)$. Show that the two-form $d\omega \in \Omega^2(M)$ satisfies

(1)
$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]).$$

(3) Given a *k*-form $\omega \in \Omega^k(M)$ and a vector field $X \in \text{Vect}(M)$ define the *k*-form $L_X \omega \in \Omega^k(M)$ by the formula

(2)
$$(L_X \omega)|_p \stackrel{\text{def}}{=} \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} (\theta_t^* \omega)_p$$

where θ_t is the flow with respect to *X* (in particular, θ_t is a diffeomorphism from a neighborhood of *p* to a neighborhood of $\theta_t(p)$. This is called the *Lie derivative* of ω with respect to *X*.

Let $\omega \in \Omega^2(\mathbf{R}^4)$ be the two-form

$$\omega = x \mathrm{d} y + z \mathrm{d} w,$$

(where we use coordinates (x, y, z, w) for **R**⁴) and let *X* be the vector field

(4)
$$X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z} + w\frac{\partial}{\partial w}$$

(a) Compute $L_X \omega$ in this example.

(b) Show by direct computation that

(5)
$$L_X \omega = \mathrm{d} \iota_X \omega + \iota_X \mathrm{d} \omega,$$