SOLUTIONS TO HOMEWORK 1

Problem 1. Let *p* be the point where the two lines intersect. For a point $q \neq p$ in the cross there clearly exists a neighborhood which is homeomorphic to an open interval. Therefore, if the cross were a topological manifold then its dimension would be one.

Any neighborhood of *p* will also be a cross, so it suffices to show that the there is no continuous map ϕ : $+ \rightarrow \mathbf{R}$ with the property that it induces a homeomorphism onto its image. It suffices to show that there is no continuous injection ϕ : $+ \rightarrow \mathbf{R}$.

Suppose that there is one. Let

$$(1) U = -\{p\}$$

be the open set obtained by removing the point *p*. Then the restriction of ϕ is a map $\phi|_U : U \to \mathbf{R} \setminus \phi(p)$. Note that *U* has four connected components, but $\mathbf{R} \setminus \phi(p)$ has two connected components. This contradicts the continuity of the injection $\phi|_U$.

Problem 2. This problem was meant to be subtle and can be clarified in the following way. The key point that the problem was attempting to probe was: *there is no smooth structure on* \lor *such that the natural closed topological embedding* $\lor \hookrightarrow \mathbb{R}^2$ *is smooth.*¹ Viewing \lor as the graph of the absolute value, this follows from the fact that the map $x \mapsto |x|$ is not smooth.

There does, however, exist a smooth structure on \lor as many of you pointed out. To obtain one of them we can simply induce the standard smooth structure on **R** along the homeomorphism

$$\mathbf{R} \to \vee$$

defined by $x \mapsto (x, |x|)$.

Because the problem was stated unclearly, both solutions will be accepted.

¹A topological embedding is a continuous map which is a homeomorphism onto its image.

Problem 3. It is clear that $\{U_{\alpha} \times V_{\beta}\}$ is a cover. We need to show that for all $\alpha, \beta, \alpha', \beta'$ that the charts

(3)
$$\phi_{\alpha} \times \psi_{\beta}$$
 and $\phi_{\alpha'} \times \psi_{\beta'}$

are smoothly compatible.

This relies on the following lemma.

Lemma 0.1. Let U, V be open subsets of $\mathbb{R}^m, \mathbb{R}^n$ respectively and suppose $F: U \to \mathbb{R}^k$, $G: V \to \mathbb{R}^l$ are smooth functions. Then the map

$$(4) F \times G \colon U \times V \to \mathbf{R}^k \times \mathbf{R}^l$$

defined by $(x, y) \mapsto (F(x), G(y))$ is smooth.

Proof. Let $\mathbf{F} = F \times G$. First we show that \mathbf{F} is C^1 . Identifying $\mathbf{R}^k \times \mathbf{R}^l = \mathbf{R}^{k+l}$, it suffices to show that each of the component partial derivatives

(5)
$$\frac{\partial \mathbf{F}^{i}}{\partial x_{i}}, \quad i = 1, \dots, k+l \quad j = 1, \dots, m+n$$

exist and are continuous. For i = 1, ..., k this follows from the fact that F is C^1 , for i = k + 1, ..., l + k this follows from the fact that G is C^1 . Iterating this we see that **F** is C^a for any integer a > 0.

Now consider the composition

(6)

$$\phi_{\alpha}(U_{\alpha} \cap U_{\alpha'}) \times \psi_{\beta}(V_{\beta} \cap V_{\beta'}) \xrightarrow{\phi_{\alpha}^{-1} \times \psi_{\beta}^{-1}} (U_{\alpha} \cap U_{\alpha'}) \times (V_{\beta} \cap V_{\beta'}) \xrightarrow{\phi_{\alpha'} \times \psi_{\beta'}} \phi_{\alpha'}(U_{\alpha} \cap U_{\alpha'}) \times \psi_{\beta'}(V_{\beta} \cap V_{\beta'}),$$

which reads

(7)
$$(\phi_{\alpha'} \times \psi_{\beta'}) \circ (\phi_{\alpha}^{-1} \times \psi_{\beta}^{-1}) = (\phi_{\alpha'} \circ \phi_{\alpha}^{-1}) \times (\psi_{\beta'} \circ \psi_{\beta'}^{-1}).$$

Applying the lemma we see that this composition is smooth.