HOMEWORK 2 DUE SEPTEMBER 22

There are three problems to turn in.
Note: The notation below (specifically in problem 2) differs slightly from the notation used in class. If $F: U \rightarrow \mathbf{R}^{m}$ is a differentiable function defined on an open set $U \subset \mathbf{R}^{n}$ then for $p \in U$ we denote by

$$
\begin{equation*}
D_{p} F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \tag{1}
\end{equation*}
$$

the total derivative of F at p. In class we used the notation $D F(p)$.
(1) Let $M_{n}(\mathbf{R})$ denote the vector space of real $n \times n$ matrices.
(a) Fix a matrix $C \in M_{n}(\mathbf{R})$ and define the map $l_{C}: M_{n}(\mathbf{R}) \rightarrow M_{n}(\mathbf{R})$ by the rule $l_{C}(A)=C A$. Show that l_{C} is differentiable and find its derivative.
(b) Let $\tau: M_{n}(\mathbf{R}) \rightarrow M_{n}(\mathbf{R})$ be the transpose map $\tau(A)=A^{t}$. Show that τ is differentiable and find its derivative.
(c) Let $f, g: M_{n}(\mathbf{R}) \rightarrow M_{n}(\mathbf{R})$ be differentiable maps. Show that the map $h: M_{n}(\mathbf{R}) \rightarrow M_{n}(\mathbf{R})$ defined by $h(A)=f(A) g(A)$ is differentiable and express its derivative in terms of the derivatives of f, g.
(d) Let $f: M_{n}(\mathbf{R}) \rightarrow M_{n}(\mathbf{R})$ be the map $f(A)=A^{t} A$. Show that f is differentiable and find its derivative.
(2) The determinant function

$$
\operatorname{det}: M_{n}(\mathbf{R}) \rightarrow \mathbf{R}
$$

is a polynomial in n variables; as such it is a smooth function. Complete the steps below to express the derivative of det in terms of familiar objects.
(a) Let $\mathbb{1} \in M_{n}(\mathbf{R})$ be the identity matrix. For a matrix B compute $D_{\mathbb{1}}(\operatorname{det})(B)$ in terms of a simple invariant of $n \times n$ matrices.
(b) Using (a), find an expression for $D_{A}(\operatorname{det})(B)$ where $A \in G L_{n}(\mathbf{R}) \subset$ $M_{n}(\mathbf{R})$ is an invertible $n \times n$ matrix.
(c) Let $\operatorname{cof}(A)$ denote the cofactor of a square matrix. Using that $G L_{n}(\mathbf{R}) \subset$ $M_{n}(\mathbf{R})$ is an open dense subset (you may use this without proof) find a formula for $D_{A}(\operatorname{det})(B)$ for arbitrary $A, B \in M_{n}(\mathbf{R})$ in terms of $\operatorname{cof}(A)$. (Hint: when $A \in G L_{n}(\mathbf{R})$ one has $\operatorname{cof}(A)=(\operatorname{det} A) A^{-1}$).
(3) Let M be any topological space and let $C^{0}(M)$ denote the algebra of continuous functions on M. Given a continuous map between spaces $F: M \rightarrow N$ define $F^{*}: C^{0}(N) \rightarrow C^{0}(M)$ by $F^{*}(f)=f \circ F$. We say that $F^{*}(f)$ is the pullback (or restriction) of f along F.
(a) Show that F^{*} is an algebra homomorphism.
(b) Suppose now that M, N are smooth manifolds. Show that $F: M \rightarrow N$ is smooth if and only if

$$
F^{*}\left(C^{\infty}(N)\right) \subset C^{\infty}(M) .
$$

(c) Show that $F^{*}: C^{\infty}(N) \rightarrow C^{\infty}(M)$ is an isomorphism if F is a diffeomorphism.

