HOMEWORK 2 DUE SEPTEMBER 22

There are three problems to turn in.

Note: The notation below (specifically in problem 2) differs slightly from the notation used in class. If $F: U \to \mathbf{R}^m$ is a differentiable function defined on an open set $U \subset \mathbf{R}^n$ then for $p \in U$ we denote by

$$(1) D_{p}F: \mathbf{R}^{n} \to \mathbf{R}^{m}$$

the total derivative of *F* at *p*. In class we used the notation DF(p).

- (1) Let $M_n(\mathbf{R})$ denote the vector space of real $n \times n$ matrices.
 - (a) Fix a matrix $C \in M_n(\mathbf{R})$ and define the map $l_C: M_n(\mathbf{R}) \to M_n(\mathbf{R})$ by the rule $l_C(A) = CA$. Show that l_C is differentiable and find its derivative.
 - (b) Let $\tau: M_n(\mathbf{R}) \to M_n(\mathbf{R})$ be the transpose map $\tau(A) = A^t$. Show that τ is differentiable and find its derivative.
 - (c) Let $f, g: M_n(\mathbf{R}) \to M_n(\mathbf{R})$ be differentiable maps. Show that the map $h: M_n(\mathbf{R}) \to M_n(\mathbf{R})$ defined by h(A) = f(A)g(A) is differentiable and express its derivative in terms of the derivatives of f, g.
 - (d) Let $f: M_n(\mathbf{R}) \to M_n(\mathbf{R})$ be the map $f(A) = A^t A$. Show that f is differentiable and find its derivative.
- (2) The determinant function

$$\det: M_n(\mathbf{R}) \to \mathbf{R}$$

is a polynomial in *n* variables; as such it is a smooth function. Complete the steps below to express the derivative of det in terms of familiar objects.

- (a) Let $\mathbb{1} \in M_n(\mathbf{R})$ be the identity matrix. For a matrix *B* compute $D_{\mathbb{1}}(\det)(B)$ in terms of a simple invariant of $n \times n$ matrices.
- (b) Using (a), find an expression for $D_A(\det)(B)$ where $A \in GL_n(\mathbf{R}) \subset M_n(\mathbf{R})$ is an invertible $n \times n$ matrix.
- (c) Let cof(A) denote the cofactor of a square matrix. Using that $GL_n(\mathbf{R}) \subset M_n(\mathbf{R})$ is an open dense subset (you may use this without proof) find a formula for $D_A(det)(B)$ for arbitrary $A, B \in M_n(\mathbf{R})$ in terms of cof(A). (Hint: when $A \in GL_n(\mathbf{R})$ one has $cof(A) = (det A)A^{-1}$).

- (3) Let *M* be any topological space and let $C^0(M)$ denote the algebra of continuous functions on *M*. Given a continuous map between spaces $F: M \to N$ define $F^*: C^0(N) \to C^0(M)$ by $F^*(f) = f \circ F$. We say that $F^*(f)$ is the *pullback* (or restriction) of *f* along *F*.
 - (a) Show that F^* is an algebra homomorphism.
 - (b) Suppose now that M, N are smooth manifolds. Show that $F: M \to N$ is smooth if and only if

$$F^*(C^{\infty}(N)) \subset C^{\infty}(M).$$

(c) Show that $F^* \colon C^{\infty}(N) \to C^{\infty}(M)$ is an isomorphism if *F* is a diffeomorphism.