SOLUTIONS TO HOMEWORK 2

Problem 1.

(a) The map l_C is linear hence differentiable (in fact, smooth). The derivative is

(1)
$$Dl_C|_A(B) = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0}l_C(A+tB) = CB.$$

(b) The map τ is linear and hence differentiable. The derivative is

$$(2) D\tau|_A(B) = B^t.$$

(c) We show that h is differentiable with derivative

(3)
$$Dh|_A(B) = (Df|_A(B))g(A) + f(A)(Dg|_A(B)).$$

Denote this linear map by *T*. It suffices to show that

(4)
$$\frac{f(A+H)g(A+H) - f(A)g(A) - T(H)}{\|H\|} \to 0$$

as $H \rightarrow 0$. Notice that

(5)
$$f(A+H)g(A+H) - f(A)g(A) - TH =$$

 $(f(A+H) - f(A) - Df|_A(H))g(A+H) + f(A)(g(A+H) - g(A) - Dg|_A(H)))$
 $+ Df|_A(H)(g(A+H) - g(A)).$

Dividing by ||H|| we see that the second line approaches zero as $H \rightarrow 0$ by differentiability of f, g respectively. It suffices to see that

(6)
$$\frac{Df|_A(H) \left(g(A+H) - g(A)\right)}{\|H\|} \to 0$$

as $H \to 0$. For this we choose a constant *C* such that $||Df|_A(H)|| \le C||H||$ for all $n \times n$ matrices *H*, which exists since $Df|_A$ is a linear map. Then

(7)
$$\frac{\|Df|_A(H)\left(g(A+H)-g(A)\right)\|}{\|H\|} \le C\|g(A+H)-g(A)\|.$$

This approaches zero as $H \rightarrow 0$ by continuity of *g*.

(d) By (b),(c) the map f is differentiable with derivative

(8)
$$Df|_A(B) = B^t A + A^t B.$$

Problem 2.

(a) The stated derivative is

(9)
$$D \det |_{\mathbb{1}}(B) = \frac{d}{dt}|_{t=0} \det(\mathbb{1} + tB)$$

For $t \neq 0$ we have

(10)
$$\det(\mathbb{1} + tB) = t^n \det(t^{-1}\mathbb{1} + B) = t^n p_{-B}(t^{-1})$$

where p_{-B} is the characteristic polynomial associated to the matrix -B. In derivative above it is immediate that only the coefficient of s^{n-1} in $p_{-B}(s)$ contributes; it is a standard fact that this coefficient is $-\operatorname{tr}(-B) = \operatorname{tr}(B)$. Thus

(11)
$$D \det |_{\mathbb{1}}(B) = \operatorname{tr}(B).$$

(b) Suppose *A* is invertible. Then

(12)
$$\det(A+tB) = \det\left[A(\mathbb{1}+tA^{-1}B)\right].$$

But since det(XY) = det X det Y we see that

(13)
$$\det(A + tB) = (\det A) \det(\mathbb{1} + tA^{-1}B).$$

It follows from part (a) that

(14)
$$D \det|_A(B) = (\det A)D \det|_1(A^{-1}B) = (\det A)\operatorname{tr}(A^{-1}B).$$

(c) The cofactor matrix of an invertible matrix A satisfies

(15)
$$\operatorname{cof}(A) = (\det A)A^{-1}$$

So from part (b) we see that if *A* is invertible then

(16)
$$D \det|_A(B) = \operatorname{tr}(\operatorname{cof}(A)B).$$

As invertible matrices are dense in all matrices, the same formula gives the expression for the derivative of det at any matrix.

Problem 3.

(a) Let f, g be continuous functions on N. Their product fg is also continuous. Moreover if $x \in M$ we have

(17)
$$F^*(fg)(x) = (fg) \circ F(x) = f(F(x))g(F(x)) = (F^*f)(x)(F^*g)(x).$$

This shows taht F^* is an algebra homomorphism.

2

(b) Suppose $f \in C^{\infty}(N)$. Then by the chain rule we know that $F^*f = f \circ F$ is a smooth function on *M*.

Conversely suppose that for every $f \in C^{\infty}(N)$ we have $F^*f \in C^{\infty}(M)$. We want to show that F is smooth. Let M, N have dimensions m, n respectively. Take a chart (V, ψ) for N and let $\tilde{U} = F^{-1}(V) \subset M$; since F is continuous this is an open subset. Since M is smooth there exists a possibly smaller open subset $U \subset \tilde{U}$ equipped with a coordinate chart $\phi : U \to \mathbb{R}^m$. By construction $F(U) \subset V$. Consider the composition $\psi \circ F \circ \phi^{-1}$:

(18)
$$\phi(U) \xrightarrow{\phi^{-1}} U \xrightarrow{F} V \xrightarrow{\psi} \psi(V).$$

Since ψ is smooth we know that $F^*\psi = \psi \circ F \colon U \to \psi(V)$ is also smooth by assumption. Since ϕ^{-1} is smooth the entire composition above is smooth.

[(c)] Suppose *F* is a diffeomorphism. The inverse to F^* is $(F^{-1})^*$. In other words $(F^*)^{-1} = (F^{-1})^*$.

As mentioned in class, to prove the converse we must assume that *F* is a homeomorphism so that its has a continuous inverse F^{-1} . Since F^* maps $C^{\infty}(N) \subset C^0(N)$ isomorphically to $C^{\infty}(M) \subset C^0(M)$ we see that by part (b) that *F* is smooth. Conversely $(F^{-1})^*$ maps $C^{\infty}(M) \subset C^0(M)$ isomorphically to $C^{\infty}(N) \subset C^0(N)$ we see that F^{-1} is smooth.