HOMEWORK 3 DUE SEPTEMBER 29

There are three problems to turn in.

- (1) Let M be a connected smooth manifold, N be any smooth manifold, and $F \colon M \to N$ a smooth map. Show that the differential dF_p is the zero map for each $p \in M$ if and only if F is a constant map. (Recall that we say F is constant if there exists a $q \in N$ such that F(x) = q for all $x \in M$.)
- (2) $\mathbf{C}^n = \mathbf{C} \times \cdots \times \mathbf{C}$ is the space of *n*-tuples of complex numbers; it is naturally a complex vector space. Using the identification $\mathbf{C} = \mathbf{R}^2$:

$$z = x + iy \leftrightarrow (x, y)$$

we see that C^n is naturally a smooth manifold diffeomorphic to R^{2n} .

Let \mathbf{CP}^1 be the set of complex one-dimensional linear subspaces of \mathbf{C}^2 .

(a) Define an equivalence relation on $\mathbb{C}^2 \setminus \{0\}$ by

$$(z,w) \sim (z',w') \iff (z',w') = (\lambda z,\lambda w), \quad \lambda \in \mathbf{C}.$$

Show that there is a bijection

$$\textbf{CP}^1\cong \left(\textbf{C}^2\setminus\{0\}\right)/\sim.$$

(b) We endow \mathbb{CP}^1 with the *quotient topology*, described as follows. Let $\pi \colon \mathbb{C}^2 \setminus \{0\} \to \mathbb{CP}^1$ be the map which sends a nonzero vector v to its equivalence class [v] as in part (a). We say $U \subset \mathbb{CP}^1$ is open if and only if

$$\pi^{-1}(U) \subset \mathbf{C}^2 \setminus \{0\}$$

is open.¹ Let $V_z \subset \mathbb{C}^2 \setminus \{0\}$ be the set where $z \neq 0$ and let $V_w \subset \mathbb{C}^2 \setminus \{0\}$ be the set where $w \neq 0$. Show that $U_z = \pi(V_z)$ and $U_w = \pi(V_w)$ are open subsets of \mathbb{CP}^1 .

(c) Define $\phi_z \colon U_z \to \mathbf{C}$ by the formula

$$\phi_z([z,w]) = \frac{w}{z}$$

and $\phi_w \colon U_w \to \mathbf{C}$ by

$$\phi_w([z,w]) = \frac{z}{w}.$$

¹This topology is Hausdorff and second countable. You do not need to prove this.

Show that ϕ_z , ϕ_w endow M with the structure of a topological manifold of dimension two.

- (d) Show that the atlas $\{(U_z, \phi_z), (U_w, \phi_w)\}$ is smooth, hence endowing \mathbf{CP}^1 with the structure of a smooth manifold. This smooth manifold is called "complex projective space".
- (3) You may treat all of the assertions in problem (2) as proven.
 - (a) Show that $\pi \colon \mathbb{C}^2 \setminus \{0\} \to \mathbb{CP}^1$ is a smooth submersion.
 - (b) Using (a), argue that there exists a smooth map $p: S^3 \to \mathbb{CP}^1$ with the property that $p^{-1}([z,w]) \cong S^1$ for every $[z,w] \in \mathbb{CP}^1$.
 - (c) Consider the subset $p^{-1}([0,1]) \subset S^3$ which by (b) is homeomorphic to S^1 . Consider the map

$$F: S^3 \setminus p^{-1}([0,1]) \to S^2$$

defined by

$$F(z,w) = \frac{1}{1+|z/w|^2} \left(z/w + \overline{z}/\overline{w}, -i(z/w - \overline{z}/\overline{w}), |z/w|^2 - 1 \right).$$

Show that *F* is well-defined and extends to a map $\widetilde{F}: S^3 \to S^2$.

(d) (BONUS: Does not need to be turned in to receive full credit) Construct a diffeomorphism $\mathbf{CP}^1 \cong S^2$. (Hint: Use part (c) to construct a map $\mathbf{C}^2 \setminus \{0\} \to S^2$ with a certain property to apply theorem 4.30 of the textbook).