SOLUTIONS TO HOMEWORK 3

Problem 1. It suffices to show that for any pair of coordinate charts (U, ϕ) for M and (V, ψ) for N (with $F(U) \subset V$) that the map $\widehat{F}=\psi \circ F \circ \phi^{-1}: \phi(U) \rightarrow \psi(V)$ is constant. By chain rule, the differential of this map at $\phi(p) \in \mathbf{R}^{m}$ is

$$
\begin{equation*}
\mathrm{d} \widehat{F}_{\phi(p)}=\mathrm{d} \psi_{F(p)} \circ \mathrm{d} F_{p} \circ \mathrm{~d} \phi_{\phi(p)}^{-1} \tag{1}
\end{equation*}
$$

which is zero by assumption. In other words, with respect to the coordinates determined by ϕ, ψ the matrix of partial derivatives of \widehat{F} at $\phi(p)$ is the zero matrix. For fixed $i=1, \ldots, n$ consider the component function $\widehat{F}^{i}: \phi(U) \rightarrow \mathbf{R}$. Fix an integer $j=1, \ldots, m$ and real numbers y_{1}, \ldots, y_{m-1} such that for appropriate $t \in \mathbf{R}$ we have $\left(y_{1}, \ldots, y_{j-1}, t, y_{j+1}, \ldots, y_{m-1}\right) \in U$. Necessarily the set of all such t is an open interval which we call J. For $j=1, \ldots, m$ let $f_{j}^{i}: J \rightarrow \mathbf{R}$ be the function

$$
\begin{equation*}
f_{j}^{i}(t)=F^{i}\left(y_{1}, \ldots, y_{j-1}, t, y_{j}, \ldots, y_{m-1}\right) \tag{2}
\end{equation*}
$$

By assumption we know that

$$
\begin{equation*}
\frac{\mathrm{d} \widehat{f}_{j}^{l}}{\mathrm{~d} t}=0 \tag{3}
\end{equation*}
$$

on J. By the (ordinary, single variable) mean value theorem this implies that f_{j}^{i} is constant. Doing this for all i, j we see that \widehat{F} is constant.

Problem 2.

(a) Consider the map

$$
\begin{equation*}
\mathbf{C}^{2} \backslash\{0\} \rightarrow \mathbf{C P}^{1} \tag{4}
\end{equation*}
$$

which sends a nonzero vector to the line that it spans. This map descends to the set of equivalence classes

$$
\begin{equation*}
\left(\mathbf{C}^{2} \backslash\{0\}\right) / \sim \rightarrow \mathbf{C P}^{1} \tag{5}
\end{equation*}
$$

The inverse to this map sends a line to equivalence class of any non-zero vector which lies on the line.
(b) By definition $U_{z}=\pi\left(V_{z}\right)$ is the set of classes $[(z, w)]$ such that $z \neq 0$. Any such class can be written as $\left[\left(1, w^{\prime}\right)\right]$ for $w^{\prime} \in \mathbf{C}$. Thus $\pi^{-1}\left(U_{z}\right)$ is the set of all nonzero vectors (z, w) such that $[(z, w)]=\left[\left(1, w^{\prime}\right)\right]$ for some w^{\prime}. This means $z=\lambda, w=\lambda w^{\prime}$ for some nonzero complex number λ which shows that $\pi^{-1}\left(U_{z}\right)=V_{z}$. This set is open by definition. Similarly U_{w} is open.
(c) We show that ϕ_{z} is a homeomorphism onto its image. In this case the image is \mathbf{C}. The inverse is defined by

$$
\begin{equation*}
\phi^{-1}(a)=[1, a] . \tag{6}
\end{equation*}
$$

This is clearly an inverse at the level of sets. It is continuous because both π and $\phi \circ \pi$ are continuous. Similarly ϕ_{w} is a homeomorphism onto its image.
(d) Note that

$$
\begin{equation*}
\phi_{z}\left(U_{z} \cap U_{w}\right)=\mathbf{C}^{\times}=\phi_{w}\left(U_{z} \cap U_{w}\right) \tag{7}
\end{equation*}
$$

We need to show that $\phi_{z} \circ \phi_{w}^{-1}, \phi_{w} \circ \phi_{z}^{-1}$ are smooth as functions $\mathbf{C}^{\times} \rightarrow \mathbf{C}^{\times}$. Let's consider the first composition. We have

$$
\begin{equation*}
\phi_{z}\left(\phi_{w}^{-1}(a)\right)=\phi_{z}([a, 1])=\frac{1}{a} . \tag{8}
\end{equation*}
$$

This map is smooth. To make this completely clear, let us write this out in real coordinates. If $a=x+\mathrm{i} y \neq 0$ then

$$
\frac{1}{a}=\frac{x}{x^{2}+y^{2}}-\mathrm{i} \frac{y}{x^{2}+y^{2}} .
$$

Thus, as a $\operatorname{map} \mathbf{R}^{2} \backslash\{0\}$ to itself, this composition is

$$
\begin{equation*}
(x, y) \mapsto\left(\frac{x}{x^{2}+y^{2}},-\frac{y}{x^{2}+y^{2}}\right) \tag{10}
\end{equation*}
$$

This is certainly smooth.

Problem 3.

(a) Consider the coordinate $\operatorname{map} \phi_{w}: U_{w} \rightarrow \mathbf{C}$ and the composition $\phi_{w} \circ \pi$. The differential of this composition at a point $(z, w) \in \mathbf{C}^{2} \backslash\{w=0\}$ is of the form

$$
\begin{equation*}
\mathrm{d}\left(\phi_{w} \circ \pi\right)_{(z, w)}: \mathbf{C}^{2} \rightarrow \mathbf{C} \tag{11}
\end{equation*}
$$

Using the formula $\phi_{w}([z, w])=z / w$ we find that with respect to the standard basis the differential is represented by the 1×2 matrix

$$
\mathrm{d}\left(\phi_{w} \circ \pi\right)_{(z, w)}=\left(\begin{array}{ll}
w^{-1} & -z w^{-1}
\end{array}\right) .
$$

This is clearly full rank since we are working in a locus where $w \neq 0$. Similarly one can show that $\mathrm{d}\left(\phi_{z} \circ \pi\right)_{(z, w)}$ is full rank for any $(z, w) \in \mathbf{C}^{2} \backslash\{z=$ $0\}$.
(b) By definition

$$
\begin{equation*}
S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{R}^{4} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\} \subset \mathbf{R}^{4} . \tag{13}
\end{equation*}
$$

In complex notation this is equivalent to

$$
\begin{equation*}
S^{3}=\left\{\left.(z, w) \in \mathbf{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\} \subset \mathbf{C}^{2} . \tag{14}
\end{equation*}
$$

Let $p=\left.\pi\right|_{S^{3}}$ be the restriction of π to the subset $S^{3} \subset \mathbf{C}^{2} \backslash\{0\}$. This is a composition of smooth maps hence smooth.

Consider the point $[1,0] \in \mathbf{C P}^{1}$. Then $\pi^{-1}([1,0])$ is the subspace $\{(z, 0) \mid z \in$ $\mathbf{C}\} \subset \mathbf{C}^{2} \backslash\{0\}$. The intersection of this subspace with S^{3} is the subspace $\left\{(z, 0)\left||z|^{2}=1\right\} \cong S^{1}\right.$. A similar argument shows that $p^{-1}([z, w]) \cong S^{1}$ for any $[z, w]$.
(c) We check that F is well-defined. It is clear that each of the components of F is a real number, so the image of F certainly lies in \mathbf{R}^{3}. From the relation

$$
\begin{equation*}
|z / w+\bar{z} / \bar{w}|^{2}+|z / w-\bar{z} / \bar{w}|^{2}+\left||z / w|^{2}-1\right|^{2}=\left(1+|z / w|^{2}\right)^{2} \tag{15}
\end{equation*}
$$

we see that the image of F lands in S^{2} as desired.
Now, let z, w be complex numbers with $w \neq 0$. Then

$$
\begin{equation*}
\frac{z / w+\bar{z} / \bar{w}}{1+|z / w|^{2}}=z \bar{w}+\bar{z} w . \tag{16}
\end{equation*}
$$

This is a simple manipulation:

$$
\frac{z / w+\bar{z} / \bar{w}}{1+z \bar{z} /(w \bar{w})}=\frac{z \bar{w}+\bar{z} w}{w \bar{w}+z \bar{z}}
$$

Using this we see that if $(z, w) \in S^{3}$ with $w \neq 0$ we see that the first component of $F(z, w)$ can be written as $z \bar{w}+\bar{z} w$. Similarly, the second component can be written as $-\mathrm{i}(z \bar{w}-\bar{z} w)$, and the last component as $z \bar{z}-w \bar{w}$. In total we see that F can be written

$$
F(z, w)=(z \bar{w}+\bar{z} w,-\mathrm{i}(z \bar{w}-\bar{z} w), z \bar{z}-w \bar{w}) .
$$

This expression makes it manifest that F extends to a map \widetilde{F} as in the problem.
(d) (This was a bonus. There are many ways to prove this. The proof here follows part (b)) Consider the map $q: \mathbf{C}^{2} \backslash\{0\} \rightarrow S^{3}$ which sends a nonzero vector v to the vector pointing in the same direction as v but with unit norm. That is

$$
q(z, w)=\frac{(z, w)}{|z|^{2}+|w|^{2}}
$$

The composition $\widetilde{F} \circ q$ is a smooth map $\mathbf{C}^{2} \backslash\{0\} \rightarrow S^{2}$ with the property that it is constant along the fibers of $\pi: \mathbf{C}^{2} \backslash\{0\} \rightarrow \mathbf{C} \mathbf{P}^{1}$. By theorem 4.30 in the textbook $\widetilde{F} \circ q$ descends to a smooth map $G: \mathbf{C P}^{1} \rightarrow S^{2}$ with the property that the diagram below commutes:

Since G is the unique smooth map making this diagram commute, we see that it is a diffeomorphism.

