HOMEWORK 3 DUE OCTOBER 6

There are three problems to turn in.

(1) In this problem you will prove the 'local section theorem' stated as follows.

Theorem 0.1. A smooth map $\pi: M \to N$ is a smooth submersion if and only if for every point $p \in M$ there exists an open set $U \subset N$ and a smooth map $\sigma: U \to M$ such that

- (a) $\pi \circ \sigma = \mathbb{1}_U$.
- (b) $\sigma(q) = p$ for some $q \in U$.
- (a) Let $m \ge n$ and $\pi_0 \colon \mathbf{R}^m \to \mathbf{R}^n$ be the natural projection. Find a smooth map $\sigma_0 \colon \mathbf{R}^n \to \mathbf{R}^m$ such that $\pi_0 \circ \sigma_0 = \mathbb{1}_{\mathbf{R}^n}$ and $\sigma_0(0) = 0$.
- (b) Assume that π is a submersion. By the constant rank theorem there exists charts such that π has coordinate representation

$$\widehat{\pi}(x^1,\ldots,x^n,x^{n+1},\ldots,x^m)=(x^1,\ldots,x^n).$$

Show that for $\epsilon > 0$ small enough that the image under $\hat{\pi}$ of the cube

$$C_{\epsilon} = \{ (x^1, \dots, x^m) \mid |x^i| < \epsilon \text{ for all } i = 1, \dots, m \}$$

is the cube

$$C'_{\epsilon} = \{ (y^1, \dots, y^m) \mid |y^j| < \epsilon \text{ for all } j = 1, \dots, n \}.$$

- (c) Use part (a) to construct the desired local section σ .
- (d) Conversely, assume that there exists such a σ . Prove that π is a submersion.
- (2) We have seen in class that the map $\pi: TM \to M$ sending a tangent vector $v \in T_pM$ at $p \in M$ to p is smooth. Show that π is a submersion.
- (3) Suppose that $M \subset N$ is an embedded submanifold of dimension *m*.
 - (a) By assumption we can view $T_p M \subset T_p N$ as a linear subspace for any $p \in M$. Show that

$$T_pM = \{v \in T_pN \mid vf = 0 \text{ when } f \in C^{\infty}(N) \text{ satisfies } f|_M = 0\}.$$

(b) Let $N = \mathbf{R}^n$ and define

$$UM \stackrel{\text{def}}{=} \{(x,v) \in \mathbf{TR}^n \mid x \in M, v \in \mathbf{T}_x M, \|v\| = 1\}.$$

HOMEWORK 3 DUE OCTOBER 6

Show that UM is an embedded submanifold of \mathbf{R}^{2n} and compute its codimension.