SOLUTIONS TO HOMEWORK 4

Problem 1.

- (a) Such a section is $\sigma_0(x^1, ..., x^n) = (x^1, ..., x^n, 0, ..., 0)$.
- (b) Fix $p \in M$. Let (\tilde{V}, ψ) , (\tilde{U}, ϕ) be charts of M, N near $p, \pi(p)$ such that $\hat{\pi} = \phi \circ \pi \circ \psi^{-1}$ has the coordinate representation as in the rank theorem. Without loss of generality we can assume that $\psi(p) = 0$ and $\phi(\pi(p)) = 0$. Since $\psi(\tilde{V}) \subset \mathbf{R}^m$ is open there exists $\epsilon > 0$ such that the *m*-cube C_{ϵ} is contained in $\psi(\tilde{V})$. Suppose $x = (x^1, \dots, x^m) \in C_{\epsilon}$, that is $|x^i| < \epsilon$ for all $i = 1, \dots, m$. Then $y = \pi(x) = (x^1, \dots, x^n)$ is in the cube C_{ϵ} since each x^i has $|x^i| < \epsilon$ for $i = 1, \dots, n \leq m$. Conversely if $y = (y^1, \dots, y^n) \in C_{\epsilon}$ then $x = (y^1, \dots, y^n, 0, \dots, 0) \in C_{\epsilon}$ and $\pi(x) = y$. This shows that $\hat{\pi}(C_{\epsilon}) = C'_{\epsilon}$.
- (c) Define $\hat{\sigma}: C'_{\epsilon} \to C_{\epsilon}$ as the restriction of σ_0 from part (a) to the unit cube. Let $V = \psi^{-1}(C_{\epsilon}) \subset \widetilde{V}$ and $U = \phi^{-1}(C'_{\epsilon}) \subset \widetilde{U}$. Then the desired local section is

(1)
$$\sigma = \psi \circ \widehat{\sigma} \circ \phi^{-1} \colon U \to V.$$

(d) Suppose that for every *p* there admits such a local section σ . From the relation $\pi \circ \sigma = \mathbb{1}_U$ we have

(2)
$$d\pi_p \circ d\sigma_{\pi(p)} = \mathbb{1}_{\mathsf{T}_{\pi(p)}U}$$

which implies that $d\pi_p$ is surjective.

Problem 2. Let (U, ϕ) be a chart for *M*. From this we associated a chart $(\pi^{-1}(U), \tilde{\phi})$ for T*M* where $\tilde{\phi} \colon \pi^{-1}(U) \to \mathbf{R}^n \times \mathbf{R}^n$ is

(3)
$$\widetilde{\phi}(p,v) = (\phi(p), \mathrm{d}\phi_p(v)).$$

The coordinate representation of π with respect to these charts is very simple:

(4)
$$\widehat{\pi} = \phi \circ \pi \circ \widetilde{\phi}^{-1}(a, v) = a.$$

That is, if $\pi_1: \mathbf{R}^n \times \mathbf{R}^n \to \mathbf{R}^n$ is the projection onto the first factor then $\hat{\pi} = \pi_1$. Since π_1 is a submersion and ϕ is a local diffeomorphism it follows that π is also a submersion when restricted to $\pi^{-1}(U)$. Since the chart (U, ϕ) was arbitrary we are done.

Problem 3.

(a) Suppose that v is a vector in the tangent space at p of M viewed as a subspace of T_pN . That is $v = di_p(w)$ where $i: M \to N$ is the inclusion and w is some vector in T_pM . If $f \in C^{\infty}(N)$ is such that $f|_M = 0$ then

(5)
$$vf = di_p(w)f = w(f \circ i) = w(f|_M) = 0.$$

Conversely suppose $v \in T_pN$ satisfies vf = 0 for any $f \in C^{\infty}(N)$ whose restriction to M vanishes $f|_M = 0$. We want to argue that there exists $w \in T_pM$ such that $v = di_p(w)$. To do this we will choose slice coordinates for $M \subset N$ near $p \in M$. That is, we choose an open subset $U \subset N$ such that $U \cap M$ is the slice $x^{m+1} = \cdots = x^n = 0$, where the (x^1, \ldots, x^m) are coordinates for $U \cap M$. With respect to these coordinates the inclusion is of the form

(6)
$$\widehat{i}(x^1,\ldots,x^m)=(x^1,\ldots,x^m,0,\ldots,0).$$

Now, the vector *v* can be written in these coordinates as

(7)
$$v = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}}$$

Furthermore, in these slice coordinates we see that the vectors $\frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^m}$ span $T_p M$, so that $v \in T_p M$ if and only if $v^i = 0$ for i > m.

To finish the proof we will show that $v^j = 0$ for any j > k. To do this we fix a bump function $\psi \in C^{\infty}(M)$ which is identically 1 on a small neighborhood of p and vanishes outside of U. For j > k, define $f^j \in C^{\infty}(M)$ by f(x) = $\psi(x)x^j$ for $x \in U$ (where we are using the coordinate on U) and $f \equiv 0$ outside of U. This is smooth by construction and since $\psi \equiv 1$ near p we have

(8)
$$\frac{\partial \psi(x) x^j}{\partial x^i}(p) = \delta_i^j$$

Thus

(9)
$$0 = v(f) = \sum_{i} v^{i} \frac{\partial(\psi(x)x^{j})}{\partial x^{i}}(p) = v^{j}.$$

as desired.

(b) Since $M \subset \mathbf{R}^n$ satisfies the local *m*-slice condition it follows that $TM \subset T\mathbf{R}^n = \mathbf{R}^n \times \mathbf{R}^n$ satisfies the local 2m-slice condition. Thus, TM is an embedded submanifold of \mathbf{R}^{2n} of dimension 2m.

Next, we show that *UM* is an embedded submanifold of *TM*. Since the composition of embedded submanifolds is an embedded submanifold, this is sufficient. Define $f : \mathbf{R}^{2n} \to \mathbf{R}$ by the formula $(x, v) \mapsto |v|^2$. This is a smooth function and hence restricts to a smooth function $f|_{TM} : TM \to \mathbf{R}$.

2

Moreover, as a subset we have $UM = (f|_{TM})^{-1}(1) \subset TM$. We will apply the regular value theorem to conclude that $1 \in \mathbf{R}$ is a regular value.

The differential of the map f at any $(x, v) \in M$ is the linear map $df_{(x,v)}$: $T_p(TM) \rightarrow \mathbf{R}$ which sends a pair of *m*-vectors (u, w) to the number $2\sum_i v_i w_i$. So as long as $v \neq 0$ the differential at (x, v) has rank 1. The preimage $f^{-1}(1) = UM$ consists only of vectors with $v \neq 0$, so we are done.