HOMEWORK 5 DUE OCTOBER 13

There are two problems to turn in.

Problem 1.

(a) Notice that h_{z}, h_{w} are the restrictions of the globally defined function

$$
\begin{equation*}
h([z, w])=\frac{|z|^{2}-|w|^{2}}{|z|^{2}+|w|^{2}} . \tag{1}
\end{equation*}
$$

(b) Consider first the restriction of h to U_{w}. The complex coordinate for U_{w} is $\phi_{w}([z, 1])=z$, which in real coordinates is $\phi_{w}([x+\mathrm{i} y, 1])=(x, y)$. In this coordinate, the function h reads

$$
\begin{equation*}
\widehat{h}_{w} \stackrel{\text { def }}{=} h \circ \phi_{w}^{-1}(x, y)=h([x+\mathrm{i} y, 1])=\frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1} . \tag{2}
\end{equation*}
$$

The differential of this function at (x, y) is represented by the 1×2 matrix

$$
\begin{equation*}
\left(\mathrm{d} h_{w}\right)_{(x, y)}=\left(\frac{4 x}{\left(x^{2}+y^{2}+1\right)}, \frac{4 y}{\left(x^{2}+y^{2}+1\right)}\right) . \tag{3}
\end{equation*}
$$

Thus, $\phi_{w}^{-1}(0,0)=[0,1]$ is the unique critical point contained in U_{w}. Notice that $h([0,1])=-1$ so that -1 is a critical value of h.

Similarly $[1,0]$ is the only critical point of h contained in U_{z} and hence the only other critical value is $h([1,0])=1$.
(c) Suppose $-1 \leq c<1$. Then $h^{-1}(c) \subset U_{z}$, and $h^{-1}(c)$ is the subset of points $[1, w] \in \mathbf{C P}^{1}$ such that

$$
\begin{equation*}
1-|w|^{2}=c\left(1+|w|^{2}\right), \tag{4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
(c+1)|w|^{2}=1-c . \tag{5}
\end{equation*}
$$

If, in addition $c \neq-1$ then this can be written as $|w|^{2}=\frac{1-c}{1+c}$. What this shows is that for $-1<c<1$ there is a diffeomorphism

$$
f: h^{-1}(c) \rightarrow S^{1},
$$

where S^{1} is the unit circle, defined by $f([1, w])=\sqrt{\frac{1+c}{1-c}} w$.
(d) We have already shown that $h^{-1}(\pm 1)$ is the singleton set.

Problem 2. Define $\widetilde{f}: \mathbf{R}^{n} \backslash\{0\} \times \mathbf{R}_{>0}$ by $\widetilde{f}(x, \lambda)=f(\lambda x)$. One one hand, by chain rule, we have

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \widetilde{f}(x, \lambda)=\lambda^{-1} \sum_{i} x^{i} \frac{\partial}{\partial x^{i}} f(\lambda x) \tag{7}
\end{equation*}
$$

On the other hand, since $\widetilde{f}(x, \lambda)=\lambda^{c} f(x)$ we have

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} \widetilde{f}(x, \lambda)=c \lambda^{c-1} f(x) \tag{8}
\end{equation*}
$$

Equating these two lines we obtain

$$
\begin{equation*}
\lambda^{c-1} E f=c \lambda^{c-1} f \tag{9}
\end{equation*}
$$

which implies the result.

