HOMEWORK 6

Let \mathbf{H} be the four-dimensional real vector space spanned by the vectors $\{\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$. A quaternion is a vector in \mathbf{H}, so of the form

$$
a \mathbf{1}+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}
$$

where a, b, c, d are real numbers. Typically, we will omit the symbol 1 and simply write a quaternion as

$$
a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}
$$

Recall that \mathbf{C} is a real vector space with basis $\{1, \mathbf{i}\}$. Define the \mathbf{R}-linear map $\Phi: \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{H}$ by

$$
\Phi(1,0)=\mathbf{1}, \quad \Phi(\mathrm{i}, 0)=\mathbf{i}, \quad \Phi(0,1)=\mathbf{j}, \quad \Phi(0, \mathrm{i})=-\mathbf{k} .
$$

Define a multiplication on $\mathbf{C} \times \mathbf{C}$ by the rule

$$
(z, w) \cdot\left(z^{\prime}, w^{\prime}\right)=\left(z z^{\prime}-w^{\prime} \bar{w}, \bar{z} w^{\prime}+z^{\prime} w\right) .
$$

With this product, $\mathbf{C} \times \mathbf{C}$ is an algebra over \mathbf{R}.
(1) Using the isomorphism Φ we can transfer the multiplication on $\mathbf{C} \times \mathbf{C}$ to \mathbf{H} to give it the structure of an algebra over \mathbf{R}. Show that with this multiplication the following relations hold

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1
$$

and

$$
\mathbf{i j k}=-1 .
$$

Is \mathbf{H} a commutative algebra?
(2) For $(a, b) \in \mathbf{C} \times \mathbf{C}$ define $(a, b)^{*} \stackrel{\text { def }}{=}(\bar{a},-b) \in \mathbf{C} \times \mathbf{C}$. Via the isomorphism Φ this induces a R-linear map $(-)^{*}: \mathbf{H} \rightarrow \mathbf{H}$. Show that the \mathbf{R}-bilinear operation

$$
\langle-,-\rangle: \mathbf{H} \times \mathbf{H} \rightarrow \mathbf{H}
$$

defined by $\langle p, q\rangle=\frac{1}{2}\left(p^{*} q+q^{*} p\right)$ is a real inner product.
(3) Suppose $p \in \mathbf{H}$ is a nonzero vector. Show that the element

$$
p^{-1} \stackrel{\text { def }}{=}\langle p, p\rangle^{-1} p^{*}
$$

is a two-sided inverse for p.
(4) Show that \mathbf{H}^{\times}(the set of nonzero quaternions) has the structure of a fourdimensional Lie group.
(5) Let $\mathbf{S} \subset \mathbf{H}^{\times}$be the set of unit quaternions. That is, the set of vectors $p \in \mathbf{H}^{\times}$ such that $\langle p, p\rangle=1$. Show that \mathbf{S} is an embedded Lie subgroup of \mathbf{H}^{\times} which is diffeomorphic to S^{3}.
(6) Suppose $p \in \mathbf{H}$ is of the form $p=b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ (that is, p has no component in the $\mathbf{1}$ direction). Show that for every $q \in \mathbf{S}$ that $q p$ is tangent to \mathbf{S} at q.
(7) Show that the three vector fields $X, Y, Z \in \operatorname{Vect}(\mathbf{H})$ defined by

$$
\left.X\right|_{q}=q \mathbf{i},\left.\quad Y\right|_{q}=q \mathbf{j},\left.\quad Z\right|_{q}=q \mathbf{k}
$$

restrict to a global frame for \mathbf{S}. (Bonus: Show that this frame is left-invariant).

