HOMEWORK 6 SOLUTIONS

(1) This is immediate verification. For example

(1)
$$\mathbf{ijk} = \Phi((\mathbf{i}, 0) \cdot (0, 1) \cdot (0, -\mathbf{i})) = -\Phi(1, 0) = -1$$

(2) Observe that $\langle -, - \rangle$ is bilinear and symmetric. We check that $\langle p, q \rangle \in \mathbf{R} \cdot \mathbf{1} = \mathbf{R}$ for any $p, q \in \mathbf{R}$. This will follow from the lemma.

Lemma 0.1. $(pq)^* = q^*p^*$ for any $p, q \in \mathbf{H}$. Moreover, $x = x^*$ if and only if $x = \lambda \mathbf{1}$ for some $\lambda \in \mathbf{R}$.

Proof. Let $p = \Phi(z, w)$, $q = \Phi(z', w')$. Then $(pq)^*$ is the image, under Φ , of

(2)
$$(zz' - w'\overline{w}, \overline{z}w' + z'w)^* = (\overline{z}\overline{z}' - \overline{w}'w, -\overline{z}w' - \overline{z}'w).$$

On the other hand q^*p^* is the image, under Φ , of

$$(3) \qquad (\overline{z}', -w') \cdot (\overline{z}, -w)$$

which agrees with the formula above. The second assertion is also a direct verification. $\hfill \Box$

By the lemma $\langle p,q \rangle^* = \frac{1}{2} (q * p + pq^*) = \langle p,q \rangle$ so that $\langle p,q \rangle \in \mathbf{R1}$ as desired. Finally, suppose that $\Phi(z,w) = p$. Then $\langle p,p \rangle = \Phi(|z|^2 + |w|^2, 0) > 0$ so long as $p \neq 0$.

(3) We have

(4)

$$pp^{-1} = p\langle p, p \rangle^{-1} p^* = \langle p, p \rangle \langle p, p \rangle^{-1} = 1.$$

Similarly, $p^{-1}p = 1$.

- (4) The multiplication H[×] × H^{*} → H[×] is the restriction of a smooth map H × H → H and is hence smooth. Similarly (-)⁻¹: H[×] → H[×] is smooth.
- (5) S is a level set of the smooth submersion H[×] → R which sends p ↦ ⟨p, p⟩. Identifying H[×] ≅ R⁴ \ {0}, this map is the usual norm on four-vectors and the result follows.
- (6) This follows from the following lemma.

Lemma 0.2. Let $q \in S$. An element $v \in H = T_qH$ is in T_qS if and only if $\langle v, q \rangle = 0$.

Proof. Recall the characterization of the tangent space of a submanifold from HW 4. Applied to this situation we see that $T_q \mathbf{S}$ is the set of vectors $v \in \mathbf{H}$ such that vf = 0 whenever $f|_{\mathbf{S}} = 0$. Suppose that $v \in T_q \mathbf{S}$ and consider the function $f \in C^{\infty}(\mathbf{H})$ defined by $f(p) = \langle p, p \rangle - 1$. Clearly $f|_{\mathbf{S}} = 0$.

Moreover $vf = 2\langle q, v \rangle$ which implies $\langle q, v \rangle = 0$. This shows that $T_q \mathbf{S} \subset \{v \in \mathbf{H} \mid \langle v, q \rangle = 0\}$. To see the reverse inclusion note that each set is a 3-dimensional linear subspace of **H**.

To complete the problem we show that $\langle qp, q \rangle = 0$. Suppose $p = \mathbf{i}$, then

(5)
$$\langle q\mathbf{i},q\rangle = \frac{1}{2}\left((q\mathbf{i})^*q + q^*q\mathbf{i}\right) = 0$$

since $\mathbf{i}^* = -\mathbf{i}$. Similarly $\langle q\mathbf{j}, q \rangle = \langle q\mathbf{k}, q \rangle = 0$.

(7) By the previous problem we see that *X*, *Y*, *Z* admit well-defined restrictions to **S**. Observe that $q\mathbf{i}$, $q\mathbf{j}$, $q\mathbf{k}$ are linearly independent whenever $q \neq 0$, this shows that $X|_{\mathbf{S}}$, $Y|_{\mathbf{S}}$, $Z|_{\mathbf{S}}$ provide a frame for **S**.

Observe that $L_q: \mathbf{S} \to \mathbf{S}$ is the restriction of the linear map $\mathbf{H} \to \mathbf{H}$ which is $p \mapsto qp$. In particular, $(dL_q)_{q'} = L_q$ for every $q, q' \in \mathbf{S}$. Applying this, we see that

(6)
$$((L_q)_*X)_{q'} = (dL_q)_{q'}X_{q'} = (dL_q)_{q'}(q'\mathbf{i}) = qq'\mathbf{i} = X_{qq'}.$$

Similarly, *Y*, *Z* are left invariant.