HOMEWORK 6

SOLUTIONS

(1) This is immediate verification. For example

$$
\begin{equation*}
\mathbf{i j} \mathbf{k}=\Phi((\mathrm{i}, 0) \cdot(0,1) \cdot(0,-\mathrm{i}))=-\Phi(1,0)=-1 \tag{1}
\end{equation*}
$$

(2) Observe that $\langle-,-\rangle$ is bilinear and symmetric. We check that $\langle p, q\rangle \in \mathbf{R}$. $\mathbf{1}=\mathbf{R}$ for any $p, q \in \mathbf{R}$. This will follow from the lemma.

Lemma 0.1. $(p q)^{*}=q^{*} p^{*}$ for any $p, q \in \mathbf{H}$. Moreover, $x=x^{*}$ if and only if $x=\lambda \mathbf{1}$ for some $\lambda \in \mathbf{R}$.

Proof. Let $p=\Phi(z, w), q=\Phi\left(z^{\prime}, w^{\prime}\right)$. Then $(p q)^{*}$ is the image, under Φ, of

$$
\left(z z^{\prime}-w^{\prime} \bar{w}, \bar{z} w^{\prime}+z^{\prime} w\right)^{*}=\left(\overline{z z^{\prime}}-\bar{w}^{\prime} w,-\bar{z} w^{\prime}-\bar{z}^{\prime} w\right) .
$$

On the other hand $q^{*} p^{*}$ is the image, under Φ, of

$$
\left(\bar{z}^{\prime},-w^{\prime}\right) \cdot(\bar{z},-w)
$$

which agrees with the formula above. The second assertion is also a direct verification.

By the lemma $\langle p, q\rangle^{*}=\frac{1}{2}\left(q * p+p q^{*}\right)=\langle p, q\rangle$ so that $\langle p, q\rangle \in \mathbf{R} \mathbf{1}$ as desired. Finally, suppose that $\Phi(z, w)=p$. Then $\langle p, p\rangle=\Phi\left(|z|^{2}+|w|^{2}, 0\right)>0$ so long as $p \neq 0$.
(3) We have

$$
\begin{equation*}
p p^{-1}=p\langle p, p\rangle^{-1} p^{*}=\langle p, p\rangle\langle p, p\rangle^{-1}=1 . \tag{4}
\end{equation*}
$$

Similarly, $p^{-1} p=1$.
(4) The multiplication $\mathbf{H}^{\times} \times \mathbf{H}^{*} \rightarrow \mathbf{H}^{\times}$is the restriction of a smooth map $\mathbf{H} \times$ $\mathbf{H} \rightarrow \mathbf{H}$ and is hence smooth. Similarly $(-)^{-1}: \mathbf{H}^{\times} \rightarrow \mathbf{H}^{\times}$is smooth.
(5) \mathbf{S} is a level set of the smooth submersion $\mathbf{H}^{\times} \rightarrow \mathbf{R}$ which sends $p \mapsto\langle p, p\rangle$. Identifying $\mathbf{H}^{\times} \cong \mathbf{R}^{4} \backslash\{0\}$, this map is the usual norm on four-vectors and the result follows.
(6) This follows from the following lemma.

Lemma 0.2. Let $q \in \mathbf{S}$. An element $v \in \mathbf{H}=T_{q} \mathbf{H}$ is in $T_{q} \mathbf{S}$ if and only if $\langle v, q\rangle=0$.

Proof. Recall the characterization of the tangent space of a submanifold from HW 4. Applied to this situation we see that $T_{q} \mathbf{S}$ is the set of vectors $v \in \mathbf{H}$ such that $v f=0$ whenever $\left.f\right|_{\mathbf{s}}=0$. Suppose that $v \in T_{q} \mathbf{S}$ and consider the function $f \in C^{\infty}(\mathbf{H})$ defined by $f(p)=\langle p, p\rangle-1$. Clearly $\left.f\right|_{\mathbf{s}}=0$.

Moreover $v f=2\langle q, v\rangle$ which implies $\langle q, v\rangle=0$. This shows that $T_{q} \mathbf{S} \subset$ $\{v \in \mathbf{H} \mid\langle v, q\rangle=0\}$. To see the reverse inclusion note that each set is a 3-dimensional linear subspace of \mathbf{H}.

To complete the problem we show that $\langle q p, q\rangle=0$. Suppose $p=\mathbf{i}$, then

$$
\langle q \mathbf{i}, q\rangle=\frac{1}{2}\left((q \mathbf{i})^{*} q+q^{*} q \mathbf{i}\right)=0
$$

since $\mathbf{i}^{*}=-\mathbf{i}$. Similarly $\langle q \mathbf{j}, q\rangle=\langle q \mathbf{k}, q\rangle=0$.
(7) By the previous problem we see that X, Y, Z admit well-defined restrictions to \mathbf{S}. Observe that $q \mathbf{i}, q \mathbf{j}, q \mathbf{k}$ are linearly independent whenever $q \neq 0$, this shows that $\left.X\right|_{\mathbf{s}},\left.Y\right|_{\mathbf{S}},\left.Z\right|_{\mathbf{s}}$ provide a frame for \mathbf{S}.

Observe that $L_{q}: \mathbf{S} \rightarrow \mathbf{S}$ is the restriction of the linear map $\mathbf{H} \rightarrow \mathbf{H}$ which is $p \mapsto q p$. In particular, $\left(\mathrm{d} L_{q}\right)_{q^{\prime}}=L_{q}$ for every $q, q^{\prime} \in \mathbf{S}$. Applying this, we see that

$$
\begin{equation*}
\left(\left(L_{q}\right)_{*} X\right)_{q^{\prime}}=\left(\mathrm{d} L_{q}\right)_{q^{\prime}} X_{q^{\prime}}=\left(\mathrm{d} L_{q}\right)_{q^{\prime}}\left(q^{\prime} \mathrm{i}\right)=q q^{\prime} \mathrm{i}=X_{q q^{\prime}} . \tag{6}
\end{equation*}
$$

Similarly, Y, Z are left invariant.

