HOMEWORK 7 DUE OCTOBER 27

There are two problems to turn in.

(1) Let *G* be a Lie group and *M* a smooth manifold. A *left G-action on M* is a smooth map

$$\rho: G \times M \to M$$

such that $\rho(gh, p) = \rho(g, \rho(h, p))$ and $\rho(e, p) = p$ for all $g, h \in G$ and $p \in M$. Let $\mathfrak{g} = \text{Lie}(G)$.

(a) Fix $p \in M$ and consider the map $\rho_p \stackrel{\text{def}}{=} \rho(-, p) \colon G \to M$. Show that for each $x \in \mathfrak{g}$ the assignment

$$p \in M \mapsto -(\mathrm{d}\rho_p)_e(x)$$

defines a vector field on *M* that we denote $X^{\rho}(x)$.

(b) Show that the assignment

$$x \in \mathfrak{g} \mapsto X^{\rho}(x)$$

defines a homomorphism of Lie algebras $X^{\rho} \colon \mathfrak{g} \to \operatorname{Vect}(M)$. (A homormophism of Lie algebras $\phi \colon \mathfrak{g} \to \mathfrak{h}$ is a linear map such that $\phi([x, y]) = [\phi(x), \phi(y)]$.)

- (c) Suppose that the left *G*-action ρ is **free**, meaning that for any $p \in M$ one has $\rho(g, p) = p$ if and only if g = e. Show that X^{ρ} is injective.
- (2) Recall that $SL(n, \mathbf{R})$ is the Lie group of $n \times n$ matrices with determinant equal to 1.
 - (a) In class we showed that $SL(n, \mathbf{R})$ is a smooth submanifold of the vector space of $n \times n$ matrices. In particular, for any $X \in SL(n, \mathbf{R})$ we can view $T_XSL(n, \mathbf{R})$ as a linear subspace of $Mat_n(\mathbf{R})$. Show that if $A \in T_1SL(n, \mathbf{R})$ then tr(A) = 0.
 - (b) Let

 $\mathfrak{sl}(n, \mathbf{R}) = \{A \in \operatorname{Mat}_n(\mathbf{R}) \mid \operatorname{tr}(A) = 0\}.$

Show that $\mathfrak{sl}(n, \mathbf{R})$ is a Lie subalgebra of $\mathfrak{gl}(n, \mathbf{R})$.

(c) Construct a Lie algebra isomorphism

$$\varepsilon$$
: Lie(*SL*(*n*, **R**)) $\rightarrow \mathfrak{sl}(n, \mathbf{R})$.