HOMEWORK 8 DUE NOVEMBER 10

There are two problems to turn in.

(1) Let $\pi: E \to M$ be a smooth vector bundle of rank *k*. Suppose $\{U_{\alpha}\}$ is an open cover of *M* which is equipped with local trivializations for *E*:

$$\psi_{\alpha} \colon E|_{U_{\alpha}} \to U_{\alpha} \times \mathbf{R}^{k}.$$

Let $g_{\alpha\beta}$: $U_{\alpha} \cap U_{\beta} \to GL(k, \mathbf{R})$ be the corresponding transition functions. Show that for any $p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$:

$$g_{\alpha\beta}(p)g_{\beta\gamma}(p) = g_{\alpha\gamma}(p)$$

This is called the *cocycle property* for the transition functions $\{g_{\alpha\beta}\}$.

(2) Recall that \mathbf{CP}^1 can be identified with the set of lines ℓ in \mathbf{C}^2 . Define

 $V = \{(\ell, z_1, z_2) \mid \ell \in \mathbf{CP}^1, (z_1, z_2) \in \ell\} \subset \mathbf{CP}^1 \times \mathbf{C}^2.$

(a) Show that *V* has the structure of a (real) rank two vector subbundle of the trivial rank four bundle $\mathbf{CP}^1 \times \mathbf{C}^2 = \mathbf{CP}^1 \times \mathbf{R}^4$ over \mathbf{CP}^1 . (b) Let $\underline{0} \subset V$ be the image of the zero section of the bundle *V*. Construct a diffeomorphism

$$V \setminus \underline{0} \xrightarrow{\cong} \mathbf{R}^4 \setminus \{0\}.$$