HOMEWORK 8 SOLUTIONS

Problem 1. Let α , β be indices such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$. The transition functions $g_{\alpha\beta}$ satisfy

(1)
$$\psi_{\alpha} \circ \psi_{\beta}^{-1}(p,v) = (p,g_{\alpha\beta}(p)v)$$

for all $p \in U_{\alpha} \cap U_{\beta}$ and $v \in E_p$. Suppose that $p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$. Then we have

$$\begin{split} \psi_{\alpha} \circ \psi_{\gamma}^{-1}(p,v) &= (\psi_{\alpha} \circ \psi_{\beta}^{-1}) \circ \psi_{\beta} \psi_{\gamma}^{-1}(p,v) \\ &= \psi_{\alpha} \circ \psi_{\beta}^{-1}(p,g_{\beta\gamma}(p)v) \\ &= (p,g_{\alpha_{\beta}}(p)g_{\beta\gamma}(p)v). \end{split}$$

But the left hand side is $(p, g_{\alpha\gamma}(p)v)$, which proves the assertion.

Problem 2.

(**a**)

(a) Let $\pi: V \to \mathbb{CP}^1$ be the map $(\ell, z_1, z_2) \mapsto \ell$. We define the trivialization maps using the standard cover $\{U_z, U_w\}$ from the previous homework. Define

(2)
$$\psi_z \colon \pi^{-1}(U_z) \to U_z \times \mathbf{C}$$

by $([1, w], z_1, z_2) \mapsto ([1, w], z_1)$ and
(3) $\psi_w \colon \pi^{-1}(U_w) \to U_w \times \mathbf{C}$

by $([z,1], z_1, z_2) \mapsto ([z,1], z_2)$.

These trivialization satisfy $p_1 \circ \psi_{z,w} = \pi$, so we need to check that for each $q \in U_{z,w}$ that $\psi_{z,w}|_{V_q}$ is a linear isomorphism. Suppose $\ell = [1, w] \in U_z$, then $\psi_z|_{V_\ell}$ is the map $V_\ell = \ell \ni (z_1, z_2) \mapsto z_1$, which is certainly linear. Its inverse is $a \mapsto (a, aw)$, which is well-defined since $(a, aw) \in \ell = [1, w]$ for any $a \in \mathbf{C}$. Similarly $\psi_w|_{V_\ell}$ is an isomorphism for $\ell \in U_w$.

(b) Define

$$(4) F: V \setminus \underline{0} \to \mathbf{C}^2 \setminus \{0\}$$

by the formula $(\ell, z_1, z_2) \mapsto (z_1, z_2)$ and

(5)
$$G: \mathbf{C}^2 \setminus \{0\} \to V \setminus \underline{0}$$

by the formula $(z_1, z_2) \mapsto ([z_1, z_2], z_1, z_2)$. To see that *G* is well-defined just observe that by definition (z_1, z_2) is on the line $[z_1, z_2]$.

Being a projection *F* is certainly smooth. To see that *G* is smooth it suffices to use the standard charts on **CP**¹. In the chart U_z , for example, *G* has the form

(6)
$$\widehat{G}(z_1, z_2) = (z_2/z_1, z_1, z_2)$$

which is certainly smooth.