HOMEWORK 9 DUE NOVEMBER 21

Define an equivalence relation on \mathbf{R}^2 by the rule

$$(1) \qquad (x,y) \sim (x+1,-y)$$

Let $E = \mathbf{R}^2 / \sim$ be the quotient space and $q: \mathbf{R}^2 \rightarrow E$ be the quotient map.

- (1) Let exp: $\mathbf{R} \to S^1$ be the map $x \mapsto e^{2\pi i x}$. Show that there exists a unique map $\pi: E \to S^1$ such that $\exp \circ p_1 = \pi \circ q$ where $p_1: \mathbf{R}^2 \to \mathbf{R}$ is projection onto the first factor.
- (2) Endow *E* with a smooth structure such that q is a smooth submersion.
- (3) Endow (E, π) with the structure of a line bundle on S^1 .
- (4) Show that *E* is not the trivial line bundle (hint: compute the transition functions).