HOMEWORK 9 DUE NOVEMBER 21

Define an equivalence relation on \mathbf{R}^{2} by the rule

$$
\begin{equation*}
(x, y) \sim(x+1,-y) \tag{1}
\end{equation*}
$$

Let $E=\mathbf{R}^{2} / \sim$ be the quotient space and $q: \mathbf{R}^{2} \rightarrow E$ be the quotient map.
(1) Let exp: $\mathbf{R} \rightarrow S^{1}$ be the map $x \mapsto e^{2 \pi i x}$. Show that there exists a unique map $\pi: E \rightarrow S^{1}$ such that $\exp \circ p_{1}=\pi \circ q$ where $p_{1}: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is projection onto the first factor.
(2) Endow E with a smooth structure such that q is a smooth submersion.
(3) Endow (E, π) with the structure of a line bundle on S^{1}.
(4) Show that E is not the trivial line bundle (hint: compute the transition functions).

