HOMEWORK 9

SOLUTIONS

There was a small typo in the original problem: the equivalence relation should read

$$
\begin{equation*}
(x, y) \sim\left(x+n,(-1)^{n} y\right) \tag{1}
\end{equation*}
$$

for some integer $n \in \mathbf{Z}$. More properly, this equivalence relation is \mathbf{Z}-generated by $(x, y) \sim(x+1,-y)$.
(1) Recall that $S^{1}=\mathbf{R} / \sim$ where \sim is the equivalence relation $x \sim x+n$. Define $\pi([x, y])=[x]$.
(2) First we decide on a topology on E. Declare $U \subset E$ is open if and only if $q^{-1}(U) \subset \mathbf{R}^{2}$ is open. Next, we need to construct a smooth atlas on E. Let

$$
\begin{equation*}
\widetilde{U}_{1}=\{(x, y) \mid x \in(0,1), y \in \mathbf{R}\} \subset E \tag{2}
\end{equation*}
$$

Then $U_{1}=q\left(\widetilde{U}_{1}\right) \subset E$ is open. Define

$$
\begin{equation*}
\phi_{1}: U_{1} \rightarrow \mathbf{R}^{2} \tag{3}
\end{equation*}
$$

by the formula $\phi_{1}([x, y])=(x, y)$. To see that this is well-defined, suppose that $[x, y]=\left[x^{\prime}, y^{\prime}\right]$ in U_{1}. Then $x^{\prime}=x+n$ and $y^{\prime}=(-1)^{n} y$ for some integer n. But one has $\left(x+n,(-1)^{n} y\right) \in \widetilde{U}_{1}$ if and only if $n=0$. Thus, ϕ_{1} is welldefined. It is immediate to see that ϕ_{1} is a homeomorphism onto its image. Similarly, let

$$
\begin{equation*}
\widetilde{U}_{2}=\{(x, y) \mid x \in(-1 / 2,1 / 2), y \in \mathbf{R}\} \subset \mathbf{R}^{2} \tag{4}
\end{equation*}
$$

then $U_{2} \stackrel{\text { def }}{=} q\left(\widetilde{U}_{2}\right)$ is open. Define

$$
\begin{equation*}
\phi_{2}: U_{2} \rightarrow \mathbf{R}^{2} \tag{5}
\end{equation*}
$$

by the formula $\phi_{2}([x, y])=(x+1, y)$. Similarly as before, we see that ϕ_{2} is well-defined and a homeomorphism onto its image.

It remains to see that $\phi_{1} \circ \phi_{2}^{-1}$ is smooth. Note that

$$
\begin{equation*}
U_{1} \cap U_{2}=q((0,1 / 2) \times \mathbf{R}) \cup q((1 / 2,1) \times \mathbf{R}) \tag{6}
\end{equation*}
$$

Thus $\phi_{1}\left(U_{1} \cap U_{2}\right)=\phi_{2}\left(U_{1} \cap U_{2}\right)$ is the disjoint union
$\{(x, y) \mid x \in(0,1 / 2), y \in \mathbf{R}\} \cup\{(x, y) \mid x \in(1 / 2,1), y \in \mathbf{R}\}=W_{1} \cup W_{2}$.
On W_{1} we have $\phi_{1} \circ \phi_{2}^{-1}(x, y)=(x, y)$ and on W_{2} we have $\phi_{1} \circ \phi_{2}^{-1}(x, y)=$ $(x,-y)$.

In each of the coordinates ϕ_{1}, ϕ_{2} the map π is simply the projection $(x, y) \mapsto$ x, which is a submersion.
(3) Let $\widetilde{V}_{1}=(0,1) \subset \mathbf{R}$ and $V_{1}=\exp \left(V_{1}\right) \subset S^{1} ; \widetilde{V}_{2}=(-1 / 2,1 / 2)$ and $V_{2}=$ $\exp \left(V_{2}\right) \subset S^{1}$. We construct local trivializations over the open sets V_{1}, V_{2}. Notice that $\pi^{-1}\left(V_{i}\right)=U_{i}$ for $i=1,2$. We define the local trivializations

$$
\begin{equation*}
\psi_{i}: U_{i} \rightarrow V_{i} \times \mathbf{R} \tag{8}
\end{equation*}
$$

for $i=1,2$ by the formula $\psi_{i}([x, y])=([x], y)$.
The transition function is $g_{12}: V_{1} \cap V_{2} \rightarrow \mathbf{R}^{\times}$satisfying

$$
\begin{equation*}
\psi_{1} \circ \psi_{2}^{-1}([x], a)=\left([x], g_{12}([x]) a\right) \tag{9}
\end{equation*}
$$

Note that $V_{1} \cap V_{2}$ is the disjoint union of the northern and souther hemispheres of the circle. On the northern hemisphere one has $g_{12}([x])=1$ and on the southern one has $g_{12}([x])=-1$. Since g_{12} is not constant we see that E is not the trivial bundle. (In fact, E is not even isomorphic to the trivial bundle.)

