PRACTICE TRUE/FALSE

- (1) An open subset of a smooth manifold is a smooth manifold.
- (2) A closed subset of a smooth manifold is a smooth manifold.
- (3) If a smooth map $F \colon \mathbf{R}^n \to \mathbf{R}^m$ satisfies $(dF)_a = F$ for every $a \in \mathbf{R}^n$ then F is a linear map.
- (4) If the graph of a function $f: M \to \mathbf{R}$ is a smooth submanifold of $M \times \mathbf{R}$, then f is smooth.
- (5) For any vector field *X* one has [X, X] = 0.
- (6) If *X* and *Y* are vector fields on \mathbf{R}^n such that [X, Y] = 0 then $X = \lambda Y$ for some constant λ .
- (7) Let $F: M \to N$ be smooth. Then $F^{-1}(c)$ is a smooth submanifold of *M* if and only if *c* is a regular value of *F*.
- (8) An injective smooth immersion is a smooth embedding.
- (9) If *F* is an injective smooth map of constant rank then it is an embedding.
- (10) Let $F: M \to N, G: N \to P$ be submersions. Then $G \circ F: M \to P$ is a submersion.
- (11) Let $F: M \to N, G: N \to P$ be immersions. Then $G \circ F: M \to P$ is an immersion.
- (12) A local diffeomorphism is an injective map.
- (13) The set

$$\{(x,y) \in \mathbf{R}^2 \mid |x|^3 + |y|^3 = 1\}$$

is a smooth submanifold of \mathbf{R}^2 .

- (14) If *V* is a vector space, then there is a canonical linear isomorphism $T_v V \cong V$ for any $v \in V$.
- (15) If *G* is a Lie group then the sets of left-invariant vector fields on *G* and right-invariant vector fields on *G* are in bijective correspondence.
- (16) A manifold *M* of dimension *n* is parallelizable if and only if there exists a diffeomorphism $TM = M \times \mathbf{R}^n$.