MA 725 - DIFFERENTIAL GEOMETRY, I HOMEWORK 2

Problem 1. Suppose that (M, g) is a Riemannian manifold of dimension n with constant curvature k. Recall that this means means that there exists a constant k such that for each $p \in M$ one has

$$R(v, w)z = k(v \wedge w)(z)$$

for all $v, w, z \in T_pM$.

(1) Show that (M, g) is an Einstein manifold with Einstein constant (n - 1)k. Recall, this means that for all $p \in M$ one has

$$Ric(v, w) = (n-1)kg(v, w)$$

for all $v, w \in T_v M$.

- (2) Show that (M, g) has constant scalar curvature scal = n(n-1)k.
- (3) From the scalar curvature, we can define the one-form d scal. Additionally, recall that given any tensor T of type (1, r), we can define its divergence $\operatorname{div}(T)$ to be the (0, r) tensor defined by

$$\operatorname{div} T = \operatorname{tr} \nabla T.$$

In other words, for vector fields X_1, \ldots, X_r , one defines div T by the rule

$$(\operatorname{div} T)(X_1,\ldots,X_n)=\operatorname{tr}(Y\mapsto (\nabla_Y S)(X_1,\ldots,X_n)).$$

Show that

$$d scal = 2 div Ric.$$

Problem 2. Let *G* be a Lie group equipped with a bi-invariant metric, and identify \mathfrak{g} with the Lie algebra of left-invariant vector fields. Let $[\mathfrak{g},\mathfrak{g}] \subset \mathfrak{g}$ be the subspace of elements of the form [X,Y] where $X,Y \in \mathfrak{g}$. Consider the linear map $\wedge^2\mathfrak{g} \to [\mathfrak{g},\mathfrak{g}]$ defined by $X \wedge Y \mapsto [X,Y]$. Show that this map is an isomorphism if and only if *G* has constant curvature. (This only happens when the Lie algebra \mathfrak{g} is $\mathfrak{su}(2)$, so the *G* is three-dimensional.)

Problem 3. Prove that the Ricci tensor is a symmetric (0,2) tensor.

Problem 4. The *Einstein tensor* of (M, g) is defined to be the symmetric (0, 2) tensor

(1)
$$G \stackrel{\text{def}}{=} \operatorname{Ric} - \frac{\operatorname{scal}}{2} \cdot g.$$

Show that G = 0 when dim M = 2. Show that, in general dim M > 2, that G = 0 if and only if the metric is Ricci flat (meaning Ric = 0).

Problem 5. Recall that by restriction the metric on \mathbb{R}^n determines a metric on the sphere $S^{n-1}(1)$ of radius 1, which we will denote by $\mathrm{d}s_{n-1}^2$. In polar coordinates, the standard metric on \mathbb{R}^n can be written as

(2)
$$g = dr^2 + g_{S^{n-1}(r)} = dr^2 + r^2 ds_{n-1}^2$$

where $g_{S^{n-1}(r)} = r^2 ds_{n-1}^2$ is the metric on the sphere $S^{n-1}(r)$ of radius r.

(a) Show that $\operatorname{Hess}(r) = \frac{1}{r} g_{S^{n-1}(r)}$.

More generally, let $\varphi_k(r)$ be the unique solution to the ordinary differential equation

$$\ddot{\varphi}_k + k\varphi_k = 0$$

satisfying $\varphi(0) = 0$, $\dot{\varphi}(0) = 1$. Denote

(4)
$$g_k = dr^2 + \varphi_k(r)^2 ds_{n-1}^2.$$

- (b) Show that when k = 1, the metric g_1 is that of the n-dimensional sphere S^n of radius 1.
- (c) Show that the metric g_k is of constant curvature k.

Even more generally, consider a metric of the form

(5)
$$g_{\varphi} = dr^2 + \varphi^2 ds_{n-1}^2.$$

where $\varphi = \varphi(r)$ is a smooth function of r.

- (d) Show that $\operatorname{Hess}(r) = (\varphi \partial_r \varphi) ds_{n-1}^2$.
- (e) Show that the only metrics g_{φ} which are Ricci flat are, in fact, flat metrics (so $\varphi(r) = a \pm r$).