MA 725 - DIFFERENTIAL GEOMETRY, I HOMEWORK 3

Problem 1. Clean up.

(1) Fix a connection on a vector bundle and let ω , Ω be the connection and curvature matrices relative to a local frame. Prove the generalized Bianchi identity

$$d\Omega^k = \Omega^k \wedge \omega - \omega \wedge \Omega^k$$

(2) Suppose that ∇ , ∇' are connections. Show that for any numbers t,s such that t+s=1 that the linear operator

$$(2) t\nabla + s\nabla'$$

is a connection.

Problem 2.

- (1) Show that $P \in \mathbf{R}[\mathfrak{gl}_r]$ is an invariant polynomial if and only if P(XY) = P(YX) for all matrices X, Y.
- (2) Let $\{s_i\}$, $\{\sigma_i\}$ be the trace and symmetric polynomials, respectively. Show that

$$s_1 = \sigma_1$$
, $s_2 = \sigma_1^2 - 2\sigma_2$, $s_3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3$

(3) Suppose that $V \to M$ is a complex vector bundle. Show that

(3)
$$p_1(V) = c_1(V)^2 - 2c_2(V).$$

Problem 3. In this problem you will compute the Chern classes of complex projective space.

- (1) Let γ be the canonical line bundle over \mathbb{CP}^n . Describe a vector bundle ω with the property that $\gamma \oplus \omega$ is isomorphic to the trivial rank (n+1) complex vector bundle.
- (2) Show that $\operatorname{Hom}_{\mathbb{C}}(\gamma,\omega) \cong T_{\mathbb{C}\mathbb{P}^n}$.
- (3) Let $\underline{\mathbf{C}}$ be the trivial rank one vector bundle. Show that $T_{\mathbf{CP}^n} \oplus \underline{\mathbf{C}} \cong (\gamma^*)^{\oplus (n+1)}$.
- (4) Conclude that

(4)
$$c(\gamma^*)^{n+1} = (1 - c_1(\gamma))^{n+1}.$$

(5) Conclude that $c(T_{\mathbb{CP}^n}) = (1+a)^{n+1}$ for some $a \in H^2(\mathbb{CP}^n; \mathbb{Z})$.

Problem 4. Suppose that *E* is a 2*k*-dimensional vector bundle. Show that $p_k(E) = e(E)^2$.

Problem 5. Suppose that L is a complex line bundle and V is a complex vector bundle of rank r. Find a formula for $c(L \otimes V)$ in terms of c(L) and c(V).

Problem 6. Suppose that S^n admits a complex structure. Show that $n \equiv 2 \mod 4$ (there are no "big theorems" at play here).