HOMEWORK 1 SOLUTIONS

Problem 1. In class we proved a formula for the symbol

(1)
$$\sigma_k(D)(x,\xi) = \lim_{t \to \infty} t^{-k} (e^{-itf} D e^{itf})(x)$$

as endomorphisms of E_x . Here *f* is any smooth function such that $df(x) = \xi$.

Taking *k t*-derivatives of the quantity inside of the limit, we can write this as

(2)
$$\sigma_k(D)(x,\xi) = \frac{(-\mathbf{i})^k}{k!} (\operatorname{ad} f)^k D = \frac{(-\mathbf{i})^k}{k!} [\cdots [D,f],f] \cdots ,f].$$

In particular if *H* is a generalized Laplacian then

(3)
$$[[H, f], f] = -2\|\xi\|^2 = -2\|df\|^2.$$

Problem 2.

- (a) There is a canonical section of $T_M^* \otimes T_M = \text{End}(T_M)$ given by the identity. This is the tautological one-form $\theta \in \Omega^1(M, T_M)$.
- (b) The equation $d\theta + \omega \wedge \theta = 0$ follows from the fact that e_j are obtained via parallel transport of an orthonormal frame of $T_{x_0}M$.
- (c) We first show that $(Eu, e_i) = \mathbf{x}^i$. Indeed, since the Levi–Civita connection is metric preserving

(4)
$$Eu(Eu, e_i) = (\nabla_{Eu}Eu, e_i) + (Eu, \nabla_{Eu}e_i) = (\nabla_{Eu}Eu, e_i).$$

To compute $\nabla_{Eu}Eu$ we recall that in normal coordinates the geodisics are precisely the rays $\mathbf{x}_t = t\mathbf{x}$. Since $Eu(\mathbf{x}_t) = t\dot{\mathbf{x}}_t$ we have

(5)
$$\nabla_{Eu}Eu = t\nabla_{\dot{\mathbf{x}}_t}(t\mathbf{x}_t) = t\dot{\mathbf{x}}_t = Eu$$

Thus, $Eu(Eu, e_i) = (Eu, e_i)$. In other words, the function (Eu, e_i) is of homogenous degree one in normal coordinates.

In normal coordinates one has $e_i = \partial_i + O(||\mathbf{x}||)$, thus

(6)
$$(Eu, e_i) = \mathbf{x}^j (\partial_j, e_i) = \mathbf{x}^i + O(\|\mathbf{x}\|^2) = \mathbf{x}^i,$$

as desired.

(d) We have $L_{Eu}\theta = (di_{Eu} + i_{Eu}d)\theta = d\mathbf{x} + i_{Eu}(-\omega \wedge \theta)$ where $d\mathbf{x}$ denotes the vector one-form $(d\mathbf{x}^1, \dots, d\mathbf{x}^n)$ and we have used $d\theta + \omega \wedge \theta = 0$. Now $L_{Eu}d\mathbf{x} = d\mathbf{x}$ and $L_{Eu}\mathbf{x} = \mathbf{x}$. Thus

(7)
$$(L_{Eu} - \mathbb{1})L_{Eu}\theta = -L_{Eu}i_{Eu}(\omega \wedge \theta).$$

But in this coordinate we have seen that $i_{Eu}\omega = 0$. Thus

(8)
$$(L_{Eu}-1)L_{Eu}\theta = \mathbf{x}L_{Eu}\omega = \mathbf{x}\iota_{Eu}\Omega.$$

This is the vector one-form $(\mathbf{x}^1 \iota_{Eu} \Omega, \ldots, \mathbf{x}^n \iota_{Eu} \Omega)$.