HOMEWORK 3

DUE ON APRIL 18

- (1) Consider the Clifford algebra $C(\mathbf{R}^3)$ associated to *n*-dimensional Euclidean space.
 - (a) Construct an isomorphism

$$C(\mathbf{R}^3) \cong M_2(\mathbf{C})$$

as real algebras.

- (b) Recall that group Spin(3) is, by definition, the exponential of the quadratic elements in C(R³). Using (a), show that Spin(3) is isomorphic to the group of unit quaternions.
- (c) Show that the group homomorphism $Spin(3) \times Spin(3) \rightarrow SO(4)$ which sends (g,h) to the orthogonal transformation $q \mapsto gq\bar{h}$ is a double cover. Conclude that $Spin(4) \cong Spin(3) \times Spin(3)$.
- (2) This problem concerns the signature operator defined on compact Riemannian manifold.
 - (a) Let *V* be an oriented Euclidean vector space and C(V) the resulting Clifford algebra and $C(V)_{\mathbf{C}} = C(V) \otimes_{\mathbf{R}} \mathbf{C}$ its complexification. If $\{e_i\}$ is an oriented, orthonormal basis for *V* define the operator

(1)
$$\Gamma = \mathbf{i}^p e_1 \cdots e_n \in C(V)_{\mathbf{C}},$$

where p = n/2 if *n* is even and (n+1)/2 if *n* is odd. Show that $\Gamma^2 = 1$.

(b) Let *M* be a compact, oriented, Riemannian manifold of dimension *n* and let

(2)
$$\star: \Omega^k(M) \to \Omega^{n-k}(M)$$

be the action by Γ via the standard Clifford module structure on $\wedge^{\bullet} T_M^* \otimes$ **C** (here $\Omega^i(M)$ denotes sections of the complexified bundle $\wedge^i T_M^* \otimes$ **C**). (Note that this definition of \star is NOT the usual Hodge *-operator, since $\star^2 = 1$ by construction.) Let d* be the adjoint to the de Rham operator defined by the metric. Show that

(3)
$$d^* = (-1)^{n+1} \star d \star$$
.

We call $d + d^*$ the signature operator.

DUE ON APRIL 18

(c) Assume that *n* is even. Define a $\mathbb{Z}/2$ grading on $\Omega^{\bullet}(M)$ as

(4)
$$\Omega^{\bullet}(M)^{\pm} \stackrel{\text{def}}{=} \{ \alpha \in \Omega^{\bullet}(M) \mid \star \alpha = \pm \alpha \}.$$

This endows $\wedge^{\bullet}T_M \otimes C$ with a non-standard complex Clifford module structure (since we are changing what the underlying super structure is). Show that when *n* is divisible by four, that this defines a non-standard Clifford module structure on the (real) bundle $\wedge^{\bullet}T_M$ and that the signature operator is a Dirac operator for this Clifford module.

• Assume that *n* is divisible by four for the remainder of the problem. Suppose we have a quadratic form *Q* on a real Euclidean vector space *V* equipped with a basis such that

$$Q(x) = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2.$$

The *signature* of *Q* is defined to be $\sigma(Q) = p - q$. Define the bilinear form on $H^{n/2}(M, \mathbf{R})$ by $\langle \alpha, \beta \rangle = \int_M \alpha \wedge \beta$ (notice this is symmetric because *n* is divisible by four). Let $\sigma(M)$ be the signature of the resulting quadratic form.

(d) Show that if k < n/2 that

$$\operatorname{ind}\left(\left(d+d^*\right)\right|_{\Omega^k\oplus\Omega^{n-k}}\right)=0$$

Conclude that

(7)
$$\operatorname{ind}(d+d^*) = \sigma(M).$$

Thus, by the McKean-Singer theorem we have that

(8)
$$\sigma(M) = \operatorname{Tr}(e^{-t\Delta}), \ t > 0$$

where Δ is the standard Laplace–Beltrami operator.

2

(5)

(6)