HOMEWORK 3

DUE ON APRIL 18

(1) Consider the Clifford algebra $C\left(\mathbf{R}^{3}\right)$ associated to n-dimensional Euclidean space.
(a) Construct an isomorphism

$$
C\left(\mathbf{R}^{3}\right) \cong M_{2}(\mathbf{C})
$$

as real algebras.
(b) Recall that group $\operatorname{Spin}(3)$ is, by definition, the exponential of the quadratic elements in $C\left(\mathbf{R}^{3}\right)$. Using (a), show that $\operatorname{SPin}(3)$ is isomorphic to the group of unit quaternions.
(c) Show that the group homomorphism $\operatorname{Spin}(3) \times \operatorname{Spin}(3) \rightarrow S O(4)$ which sends (g, h) to the orthogonal transformation $q \mapsto g q \bar{h}$ is a double cover. Conclude that $\operatorname{Spin}(4) \cong \operatorname{Sin}(3) \times \operatorname{Spin}(3)$.
(2) This problem concerns the signature operator defined on compact Riemannian manifold.
(a) Let V be an oriented Euclidean vector space and $C(V)$ the resulting Clifford algebra and $C(V)_{\mathbf{C}}=C(V) \otimes_{\mathbf{R}} \mathbf{C}$ its complexification. If $\left\{e_{i}\right\}$ is an oriented, orthonormal basis for V define the operator

$$
\begin{equation*}
\star: \Omega^{k}(M) \rightarrow \Omega^{n-k}(M) \tag{2}
\end{equation*}
$$

be the action by Γ via the standard Clifford module structure on $\wedge^{\bullet} \mathrm{T}_{M}^{*} \otimes$ \mathbf{C} (here $\Omega^{i}(M)$ denotes sections of the complexified bundle $\wedge^{i} \mathrm{~T}_{M}^{*} \otimes \mathbf{C}$). (Note that this definition of \star is NOT the usual Hodge $*$-operator, since $\star^{2}=1$ by construction.) Let d^{*} be the adjoint to the de Rham operator defined by the metric. Show that

$$
\begin{equation*}
\mathrm{d}^{*}=(-1)^{n+1} \star \mathrm{~d} \star . \tag{3}
\end{equation*}
$$

We call $\mathrm{d}+\mathrm{d}^{*}$ the signature operator.
(c) Assume that n is even. Define a $\mathbf{Z} / 2$ grading on $\Omega^{\bullet}(M)$ as

$$
\begin{equation*}
\Omega^{\bullet}(M)^{ \pm} \stackrel{\text { def }}{=}\left\{\alpha \in \Omega^{\bullet}(M) \mid \star \alpha= \pm \alpha\right\} . \tag{4}
\end{equation*}
$$

This endows $\wedge^{\bullet} \mathrm{T}_{M} \otimes \mathbf{C}$ with a non-standard complex Clifford module structure (since we are changing what the underlying super structure is). Show that when n is divisible by four, that this defines a nonstandard Clifford module structure on the (real) bundle $\wedge^{\bullet} \mathrm{T}_{M}$ and that the signature operator is a Dirac operator for this Clifford module.

- Assume that n is divisible by four for the remainder of the problem. Suppose we have a quadratic form Q on a real Euclidean vector space V equipped with a basis such that

$$
Q(x)=x_{1}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2} .
$$

The signature of Q is defined to be $\sigma(Q)=p-q$. Define the bilinear form on $H^{n / 2}(M, \mathbf{R})$ by $\langle\alpha, \beta\rangle=\int_{M} \alpha \wedge \beta$ (notice this is symmetric because n is divisible by four). Let $\sigma(M)$ be the signature of the resulting quadratic form.
(d) Show that if $k<n / 2$ that

$$
\begin{equation*}
\text { ind }\left(\left.\left(\mathrm{d}+\mathrm{d}^{*}\right)\right|_{\Omega^{k} \oplus \Omega^{n-k}}\right)=0 \tag{6}
\end{equation*}
$$

Conclude that

$$
\operatorname{ind}\left(\mathrm{d}+\mathrm{d}^{*}\right)=\sigma(M)
$$

Thus, by the McKean-Singer theorem we have that

$$
\sigma(M)=\operatorname{Tr}\left(e^{-t \Delta}\right), t>0
$$

where Δ is the standard Laplace-Beltrami operator.

