
THE MAIN THEOREM

Dirac’s goal was to find a first-order differential operator whose square is the
Laplacian. A generalized Laplacian H is a second order differential operator acting
on sections of a vector bundle E over a Riemannian manifold M with the property
that its symbol evaluated at (x, ξ) ∈ M× T∗x M is |ξ|2. In the same spirit as Dirac;
Berline, Getzler, and Vergne define a Dirac operator to be any differential operator
whose square is a generalized Laplacian.

Definition 0.1. Let E = E+ ⊕ ΠE− be a super vector bundle on a Riemannian
manifold M. A Dirac operator on E is an odd first-order differential operator

(1) D : E→ E

such that D2 is a generalized Laplacian.

A fundamental result is that if M is compact then a Dirac operator D on M has
finite dimensional kernel. The Atiyah–Singer index theorem is an expression for
the index

(2) indD = dim kerD+ − dim kerD−.

In other words, the index is the super-dimension of ker D. To state the index the-
orem it is convenient to assume that we have a Dirac operator associated to a so-
called Clifford module structure on the bundle E. (We will see that this is at no
loss of generality, there is a one-to-one correspondence between Clifford module
structures and compatible Dirac operators.)

These notes sketch the proof of the following index theorem as presented in the
book of Berline, Getzler, and Vergne.

Theorem 0.2. Let D be the Dirac operator associated to a Clifford module E over a compact
oriented manifold M of even dimension. Then

(3) ind(D) =
1

(2πi)n/2

∫
M

Â(M) ch(E/S).

1. HEAT KERNELS OF GENERALIZED LAPLACIANS AND THEIR TRACE

Let E be a vector bundle on a Riemannian manifold M. Let Denss be the bun-
dle of s-densities on M; this is the line bundle associated to the one-dimensional
representation |det |−s. A kernel is a section

(4) k(x, y) ∈ Γ
(

M×M, (E∗ ⊗Dens1/2)� (F⊗Dens1/2)
)
.
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A kernel determines an operator

(5) K : Γc(M, E⊗Dens1/2)→ Γ(M, F⊗Dens1/2)

defined by the formula (Ks)(x) =
∫

y∈M k(x, y)s(y). Here Γ(M,−) denotes distri-
butional (or generalized) sections. The Schwarz kernel theorem asserts an equiva-
lence between bounded linear operators of the above type and kernels. If K is an
operator of this type, we will often write the associated kernel as 〈x|K|y〉.

We are most interested in making sense of the R+-family of operators e−tH where
H is a generalized Laplacian. A heat kernel pt(x, y) axiomatizes the properties that
the kernel of such a family of operators must possess. A heat kernel pt(x, y) for H
is of class C1 in t, of class C2 in x, y. Importantly, a heat kernel satisfies the heat
equation

(6) (∂t + Hx)pt(x, y) = 0

together with the initial condition limt→0 pt(x, y) = δ(x− y).

On Euclidean space Rn, there is the following explicit expression for the heat

(7) qt(x, y) =
1

(4πt)n/2 e−‖x−y‖2/4t.

To produce the heat kernel associated to an arbitrary generalized Laplacian H
one proceeds by the following steps.

(1) First, one constructs a formal heat kernel of the form

(8) kt(x, y) = qt(x, y)
∞

∑
i=0

tiΦi(x, y, H)|dy|1/2

By formal one means a few things. The sections Φi are defined only in
a neighborhood of the diagonal in M × M, and the resulting local section
x 7→ Φt(x, y) satisfies the modified heat equation

(9) (∂t + t−1∇Eu + j1/2 ◦ H ◦ j−1/2)Φt(·, y) = 0,

where Eu is the Euler vector field defined using normal coordinates in a
neighborhood of y, and j is the determinant of the Jacobian matrix in normal
coordinates.

(2) From a formal solution kt(x, y) one uses a cut-off function ψ : R+ → [0, 1] to
define an approximate solution of the form

(10) kN
t (x, y) = ψ(d(x, y)2)qt(x, y)

N

∑
i=0

tiΦi(x, y, H)|dy|1/2

which is defined everywhere on M × M and for each N ≥ 0. The key
property of the approximate heat kernel is that its failure to satisfy the heat
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equation

(11) rN
t (x, y) def

= (∂t + Hx)kN
t (x, y)

satisfies an estimate of the form

(12) ‖rN
t (x, y)‖` ≤ C(`)tN−n/2−`/2

for each ` > 0.
(3) From the approximate solution one defines a family of kernels

(13) qN,k
t (x, y) def

=

∫

t∆k

∫

Mk

kN
t−tk

(x, zk)rtk−tk−1(zk, zk−1) · · · rt1(z1, y)

for k ≥ 0. For N large enough, we can use the above estimate to argue that
this integral is well-defined, the sum

(14) pt(x, y) def
=

∞

∑
k=0

(−1)kqN,k
t (x, y)

converges, and is a heat kernel for H.

The Hilbert–Schmidt norm of an operator A acting on a Hilbert space with or-
thonormal basis {ei} is defined as

(15) ‖A‖2
HS = ∑

i,j
(Aei, ej).

An operator A is called Hilbert–Schmidt if its Hilbert–Schmidt norm is finite. An
operator is trace-class if it has the form AB where A, B are Hilbert–Schmidt. For
such an operator the sum

(16) Tr(AB) def
= ∑

i
(ABei, ei),

is finite.

Let M be a compact manifold and E a Hermitian vector bundle on M. Given two
sections s, s′ of E⊗Dens1/2) then (s, s′)E = Tr(s∗s′) is a section of Dens. Denote

(17) ΓL2(M, E⊗Dens1/2)

the Hilbert space of space of square-integrable sections of E⊗Dens1/2. If A is an
operator acting on sections of E⊗Dens1/2 with square-integrable kernel

(18) 〈x|A|y〉 ∈ ΓL2(M×M, E⊗Dens1/2 �E⊗Dens1/2),

then A is trace class with

(19) Tr(A) =

∫
x∈M

Tr(〈x|A|x〉).

Here, Tr(〈x|A|x〉) is the density obtained by restricting 〈x|A|y〉 to the diagonal and
applying the inner product.
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If H is a generalized Laplacian acting sections of E ⊗ Dens1/2, then the opera-
tor Pt associated to the heat kernel pt(x, y) of H is trace class for any t > 0 with
trace

(20) Tr(Pt) =

∫
x∈M

Tr(pt(x, x)).

If E is a Hermitian vector bundle, then a generalized Laplacian H acting on sec-
tions of E⊗Dens1/2 is symmetric if H = H∗, the formal adjoint of H. In this case,
the operator Pt associated to the heat kernel pt(x, y) of H is equal to e−tH.1 Let
P(0,∞) be the projection onto the space of eigensections of H with positive eigen-
value. Then, the kernel 〈x|P(0,∞)e−tHP(0,∞)|y〉 satisfies the following important
bound: for t sufficiently large one has

(21) ‖〈x|P(0,∞)e
−tHP(0,∞)|y〉‖` ≤ C(`)e−tλ1

where λ1 is the smallest non-zero positive eigenvalue of H.

1More precisely, it is the closure H of H acting on Γ(M, E⊗Dens1/2) that should appear here, but
we will not distinguish these two operators in what follows.
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