
The ABS construction

In this note we provide an overview of the construction of Atiyah, Bott, and Shapiro
which provides, in part, a relationship between topological K-theory and Clifford
modules. After a rapid introduction to K-theory we follow parts of the original refer-
ence [ABS64]. For a nice textbook review of K-theory see [Hat03].

1. A rapid introduction to K-theory

In this section the field k is either R or C, and we consider k-vector bundles on a
space X. Write kn for the trivial bundle of rank n.

We introduce two equivalence relations on the set of vector bundles Vect(X).

• Stable isomorphism ≃s. Two vector bundles E1, E2 on X are stably isomorphic,
we write E1 ≃s E2, if there exists an N ≥ 0 and a bundle isomorphism

e1 ⊕ kN ≃ E2 ⊕ kN .

• Equivalence relation ∼. More generally, we say E1 ∼ E2 if there exists N, M ≥
0 such that

E1 ⊕ kN ≃ E2 ⊕ kM.

Proposition 1.1. If X is compact Hausdorff, then the set of ∼-equivalence classes of vector
bundles over X forms an abelian group with respect to direct sum ⊕. This group is denoted
K̃(X).

This group K̃(X) is called the reduced K-group of X. The unreduced version is
defined using the equivalence relation ≃, except it is slightly more complicated. The
issue is that only the class of the zero vector bundle is invertible in the set of ≃s-
equivalence classes with respect to direct sum. Nevertheless, we can “cancel” bundles
in some sense.

Lemma 1.2. Suppose X is compact and E is a vector bundle on X. There exists a vector bundle
E′ on X such that E ⊕ E′ is trivializable.
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PROOF. Suppose {Ui} is a finite trivializing cover for E, so we have trivializations
ϕi : Ui × kn → E. There is a partition of unity { fi : X → [0, 1]} subordinate to this
finite cover. For each i this allows us to define a vector bundle homomorphism

(1) fi · ϕ−1
i : E → X × kn

Together, thus, we get a vector bundle homomorphism

(2) ⊕ fi · ϕ−1
i : E → X × kN

where N is n times the cardinality of the set parametrizing the cover. This morphism
is fiberwise injective since fi is non-vanishing at at least one point of Ui. So, we have
embedded E into a trivial vector bundle. Fix an inner product on the trivial vector
bundle (this exists by paracompactness). Then E ⊕ E⊥ ≃ k⊕N □

For example, if M has a framing and S ⊂ M is a submanifold, then the sum of TS
with the normal bundle NMS is trivializable.

From this lemma, we see that if E1 ⊕ E2 ≃s E1 ⊕ E3 then we can add E⊥
1 to both

sides to see that E2 ≃s E3. It follows that the set of ≃s-equivalence classes forms
a semi-group with respect to ⊕. The K-group K(X) is the group completion of this
semi-group. (Think of the positive rational numbers Q>0 as the group completion of
the semi-group of positive natural numbers Z>0 under multiplication.)

1.1. By definition, one represents elements of K(X) as classes of formal differ-
ences

[E1 − E2]

where E1, E2 are bundles on X. Then [E1 − E2] = [E′
1 − E′

2] if and only if there is a
stable equivalence

E1 ⊕ E′
2 ≃s E′

1 ⊕ E2.

The group operation is the obvious thing

[E1 − E2] + [E2 − E′
2] = [(E1 ⊕ E2)− (E′

1 ⊕ E′
2)].

Note that every element in K(X) can be represented by a formal difference [E − kn]

for some bundle E and some integer n.

There is a natural homomorphism K(X) → K̃(X) defined by [E−kn] → [E] whose
kernel consists of classes of the form k0 − kn. Hence, E ≃s km for some m. Thus, the
kernel of this homomorphism is Z and there is an isomorphism K(X) ≃ K̃(X) ⊕ Z
coming from a splitting of this homomorphism K(X) → K(pt) whose kernel is exactly
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K̃(X). The subgroup K̃(X) of K(X) is an ideal and hence a ring in its own right with
respect to tensor product.

A map f : X → Y determines a ring map on K-theory f ∗ : K(Y) → K(X) which
sends a vector bundle [E] on Y to the vector bundle [ f ∗E] on X. Likewise, reduced
K-theory is also functorial.

One of the main results about K-theory is Bott periodicity. It is easiest to state for
complex K-theory, so for now we work over C.

From now on K(X) and K̃(X) will denote complex K-theory and reduced complex
K-theory. Real K-theory is denoted KO(X) and its reduced version is K̃O(X).

Let L = O(−1) be the tautological line bundle on P1 = S2 (this is a holomorphic
line bundle, but K-theory only knows its structure as a complex line bundle).

Lemma 1.3. There is a bundle isomorphism L ⊗ L ⊕ C ≃ L ⊕ L.

PROOF. On P1 the data of a vector bundle is specified the homotopy class of a map

(3) S1 → GL(2, C)

Let Et be a continuous path in GL(2, C) which satisfies

(4) E0 = 1, E1 =

(
0 1
1 0

)
.

Such a path exists by connectedness. Consider the path in Map(S1, GL(2, C)):

(5) ft(z) =

(
z 0
0 1

)
Et

(
1 0
0 z

)
Et.

This is a path from the clutching function for L ⊕ L to the clutching function for L ⊗
L ⊕ C. □

It follows that there is a ring homomorphism

(6) Z[L]/(L − 1)2 → K(S2).

THEOREM 1.4. This is an isomorphism.

If a ∈ K(X) and b ∈ K(Y) then define a ⋆ b = p∗1(a)⊗ p∗2(b) ∈ K(X × Y). This is
called the external product. Without much more work, one can show that

(7) L ⋆ (−) : Z[L]/(L − 1)2 ⊗ K(X) → K(S2 × X)

is an isomorphism of rings.
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The reduced version of this homomorphism is of the form

(8) K̃(X) → K̃(S2X)

and explicitly sends x 7→ (L − 1) ⋆ x.

THEOREM 1.5 (Bott periodicity). This is an isomorphism of rings.

1.2. We now construct a graded version of K-theory.

The suspension SX of a space X is defined to be the quotient of the cylinder X ×
[0, 1] where we identify X × {0} to a single point and X × {1} to a single point. For
example Sn+1 is homeomorphic to S(Sn). Equivalently, Sn can be seen as the nth fold
suspension of S0 = {−1,+1}.

The graded version of K-theory is defined using the suspension. Define, for re-
duced K-theory

(9) K̃−n(X)
def
= K̃(SnX).

In total, define the graded abelian group

(10) K̃−•(X)
def
= ⊕n≥0K̃−n(X).

The negative grading is chosen to match with with cohomological grading. For non-
reduced, one defines K−n(X) = K̃−n(X+).

For A ⊂ X a closed subspace, there is the following exact sequence in reduced
K-groups

(11) · · · → K̃(SX) → K̃(SA) → K̃(X/A) → K̃(X) → K̃(A)

The right most map is restriction of vector bundles from X to A, and the second to
right most map is pulling back along the quotient map X → X/A.

We use this exact sequence to find a relationship of K-theory with products of

spaces. Let X ∧ Y def
= X × Y/X ∨ Y, where X ∨ Y is defined using specified basepoints

of X and Y. Then we can apply the above long exact sequence to the pair (X × Y, X ∨
Y) deduce an isomorphism

(12) K̃(X × Y) ≃ K(X ∧ Y)⊕ K̃(X)⊕ K̃(Y).

We thus get a different sort of external product, defined by the composition

(13) K̃(X)⊗ K̃(Y) ⋆−→ K̃(X × Y) → K̃(X ∧ Y)
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where the last map is projection. Replacing X, Y by SiX, SjY defines a product

(14) K̃i(X)⊗ K̃ j(Y) → K̃i+j(X ∧ Y).

Finally, in the case that X = Y we can additionally compose with the restriction along
the diagonal map X → X ∧ X to get a product

(15) K̃i(X)⊗ K̃ j(X) → Ki+j(X).

Proposition 1.6. This endows K̃•(X) with the structure of a commutative graded ring.

From Bott periodicity, one immediately obtains a graded ring isomorphism

(16) K•(⋆) ≃ Z[L]

where L ∈ K̃−2(⋆) = K̃(S2) is a degree −2 generator and represents the canonical line
bundle L.
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