Clifford algebra

1. Basic definitions

In this note we introduce the rudiments of Clifford algebra. For more details we refer to [LM89, Chapter I].

1.1. Let **k** be a field (with characteristic different from 2) and let *V* be a **k**-vector space. A quadratic form is a symmetric, bilinear map $\langle -, - \rangle \colon V \times V \to \mathbf{k}$ which is non-degenerate in the sense that $\langle v, w \rangle = 0$ for all $w \in V$ implies v = 0. We will write $q(v) = \langle v, v \rangle$ in what follows.

The **Clifford algebra** $C\ell(V,q)$ associated to *V* is the quotient of the tensor algebra

(1)
$$T(V) = \bigoplus_{k \ge 0} V^{\otimes k}$$

by the two-sided ideal generated by elements

(2)
$$v \otimes v - q(v) \cdot 1$$
, $v \in V$.

Notice that the relation $v^2 = -q(v)1$, for all $v \in V$, can be equivalently written as the relation

(3)
$$v \cdot w + w \cdot v = -2\langle v, w \rangle 1$$

for all $v, w \in V$.

Proposition 1.1. *The Clifford algebra* $C\ell(V,q)$ *is the universal algebra for which:*

- *there is an injection i*: $V \hookrightarrow C\ell(V,q)$,
- *let* ϕ : $V \to A$ *be a linear map of* V *into a (unital)* **k***-algebra* A *such that*

$$\phi(x)^2 = -q(x)\mathbf{1}.$$

Then there exists a unique homomorphism $\tilde{\phi} \colon C\ell(V,q) \to A$ such that $\tilde{\phi} \circ i = \phi$.

The orthogonal group O(V, q) are the linear automorphisms of V which preserve q. If $f: V \to V$ is such an automorphism then, $f(v)^2 = -q(f(v))\mathbb{1} = q(v)\mathbb{1}$ in $\mathbb{C}\ell(V, q)$

for all $v \in V$. Thus f defines a unique algebra homomorphism $\tilde{f} \colon C\ell(V,q) \to C\ell(V,q)$ with the property that $\tilde{f}|_V = f$. Moreover, since f is bijective so is \tilde{f} . Thus we have constructed a group embedding

(4)
$$O(V,q) \hookrightarrow \operatorname{Aut} \operatorname{C}\ell(V,q).$$

In fact, the group lies within the subgroup of *inner* automorphisms.

1.2. A *filtered* algebra is an algebra *A* with an exhaustive sequence of subspaces

$$0 = F^{-1}A \subset F^0A \subset \cdots \subset F^{\ell}A \subset \cdots \subset F^{\infty}A = A$$

such that if $a \in F^pA$, $b \in F^qA$ then $ab \in F^{p+q}A$.

Let $A = \{F^{\bullet}A\}$ be a filtered algebra. The associated graded gr *A* has underlying vector space

$$\operatorname{gr} A = \bigoplus_{k>0} F^k A / F^{k-1} A.$$

The product on *A* defines a product on gr *A*, giving gr *A* the structure of an algebra for which the canonical map $A \rightarrow \text{gr } A$ is a homomorphism.

There is a filtration on the tensor algebra T(V) defined by

(5)
$$F^p T(V) \stackrel{\text{def}}{=} \bigoplus_{k < p} F^k V$$

This induces a filtration on the Clifford algebra $C\ell(V, q)$ such that

(6)
$$\operatorname{gr} \operatorname{C}\ell(V,q) \cong \wedge V_{\lambda}$$

where $\wedge V$ is the exterior algebra on *V*. This implies the following.

Lemma 1.2. Suppose $\{e_i\}$ is a basis for V. Then

$$e_{i_1}\cdots e_{i_k}$$

where $i_1 < \cdots < i_k$, $k \ge 0$, form a basis for $C\ell(V,q)$. In particular, dim $C\ell(V,q) = 2^{\dim V}$.

1.3. Let $C\ell^{ev,odd}(V,q)$ be the images of

$$\oplus_{i>0}V^{\otimes 2i}$$
, $\oplus_{i>0}V^{\otimes 2i+1}$

in $C\ell(V,q)$, respectively.

Proposition 1.3. Both $C\ell^{ev,odd}(V,q)$ are subalgebras of $C\ell(V,q)$ and

(7)
$$C\ell(V,q) = C\ell^{ev}(V,q) \oplus C\ell^{odd}(V,q).$$

Furthermore, the product decomposes as

$$C\ell^{ev}(V,q) \times C\ell^{ev}(V,q) \to C\ell^{ev}(V,q)$$

$$C\ell^{ev}(V,q) \times C\ell^{odd}(V,q) \to C\ell^{odd}(V,q)$$

$$C\ell^{odd}(V,q) \times C\ell^{ev}(V,q) \to C\ell^{odd}(V,q)$$

$$C\ell^{odd}(V,q) \times C\ell^{odd}(V,q) \to C\ell^{ev}(V,q).$$

The axioms of the above proposition characterize what is called a $\mathbb{Z}/2$ graded algebra, or *superalgebra*. Notice that $\wedge V$ is naturally a $\mathbb{Z}/2$ graded algebra, and the canonical homomorphism $C\ell(V,q) \rightarrow \wedge V$ preserves the $\mathbb{Z}/2$ gradings.

Proposition 1.4. There is a natural isomorphism

(8)
$$C\ell(V_1 \oplus V_2, q_1 \oplus q_2) \cong C\ell(V_1, q_1) \otimes^{gr} C\ell(V_2, q_2)$$

where the tensor product is the graded tensor product (see below) of $\mathbb{Z}/2$ graded algebras.

The graded tensor product $A \otimes^{gr} B$ of $\mathbb{Z}/2$ graded algebras A, B differs from the usual tensor product of plain ungraded algebras. As a vector space, it does agree with the standard tensor product

$$A \otimes^{gr} B = A^{ev} \otimes B^{ev} \oplus A^{ev} \otimes B^{odd} \oplus A^{odd} \otimes B^{ev} \oplus A^{odd} \oplus B^{odd}$$

The product, on the other hand, is defined by

$$(a \otimes x) \cdot (y \otimes b) = (-1)^{|x||y|} ay \otimes xb$$

where $a, y \in A$ and $b, x \in B$.

1.4. Here is an alternative description of the $\mathbb{Z}/2$ grading. Let $i_q \colon V \hookrightarrow C\ell(V,q)$ denote the canonical morphism. Consider the automorphism

(9)
$$\alpha: C\ell(V,q) \to C\ell(V,q)$$

which extends the linear map $v \mapsto -v$. Since $\alpha^2 = \mathbb{1}_{C\ell(V,q)}$ we have a decomposition

(10)
$$C\ell^{ev,odd}(V,q) = \{x \in C\ell(V,q) \mid \alpha(x) = (-1)^{ev,odd}x\}.$$

These are exactly the even/odd subspaces from above.

1.5. As another example of an involution consider the reversal of order map

(11)
$$v_1 \otimes \cdots \otimes v_k \mapsto v_k \otimes \cdots \otimes v_1$$

This preserves the defining ideal so descends to a linear automorphism of the Clifford algebra. This automorphism is not compatible with the algebra structure in the usual sense. It is an anti-automorphism in the sense that $(\varphi \psi)^t = \psi^t \varphi^t$.

2. Pin and spin groups

2.1. Given any algebra *A* we let $A^{\times} \subset A$ denote the group of units; the group of elements which admit a multiplicative inverse. There is a group homomorphism

(12) $\operatorname{Ad}: A^{\times} \hookrightarrow \operatorname{Aut} A,$

defined by Ad_a : $x \mapsto axa^{-1}$.

In the case of the Clifford algebra $A = C\ell(V, q)$ (and $\mathbf{k} = \mathbf{R}$ or \mathbf{C}) the group of units $C\ell(V, q)^{\times}$ is a Lie group of dimension 2^n . The following is a useful computation.

Proposition 2.1. Suppose $v \in V$ satisfies $q(v) \neq 0$. Then

(13)
$$-\operatorname{Ad}_{v}(x) = x - 2\frac{\langle v, x \rangle}{\langle v, v \rangle}v.$$

The Lie algebra Lie $C\ell(V,q)$ is isomorphic to $C\ell(V,q)$ as a vector space and the bracket is the commutator

(14)
$$[x,y] \stackrel{\text{def}}{=} xy - yx$$

(In fact, any algebra *A* defines a Lie algebra by the commutator.) The derivative of the group-level adjoint defines a Lie algebra homomorphism

(15) ad: Lie
$$C\ell(V,q) \to Der C\ell(V,q)$$
,

given by $\operatorname{ad}_y(x) = [y, x]$.

2.2. The orthogonal group $O(V,q) \subset GL(V)$ is the subgroup of linear isomorphisms $A: V \to V$ which preserve the bilinear form q(Av) = q(v). An easy calculation implies that if $A \in O(V,q)$ then det $A = \pm 1$. The subgroup $SO(V,q) \subset O(V,q)$ consists of elements with det A = 1. This subgroup is connected.

The Lie algebra of SO(V, q) is the Lie algebra of skew-symmetric matrices

(16)
$$\mathfrak{so}(V) = \{A \colon V \to V \mid \langle Av, w \rangle = -\langle v, Aw \rangle \}.$$

Proposition 2.2. The map

(17) $T: \wedge^2 V \to \mathfrak{so}(V)$

which sends $x \wedge y \in \wedge^2 V$ to the endomorphism

(18)
$$T_{x \wedge y}(v) = \langle x, v \rangle y - \langle y, v \rangle x$$

is an isomorphism.

Explicitly, matrix commutator corresponds to the operation on $\wedge^2 V$:

(19)
$$[u \wedge v, x \wedge y] = \langle u, x \rangle v \wedge y - \langle u, y \rangle v \wedge x - \langle v, x \rangle u \wedge y + \langle v, y \rangle u \wedge x$$

Thus, with this bracket, we can identify $\wedge^2 V \cong \mathfrak{so}(V)$ as Lie algebras. Notice that we can write

(20)
$$[u \wedge v, x \wedge y] = T_{u \wedge v}(x) \wedge y - T_{u \wedge v}(y) \wedge x.$$

Proposition 2.3. *The Lie algebra* $\mathfrak{so}(V)$ *naturally embeds into the Clifford algebra via the homomorphism*

(21)
$$\rho: \wedge^2 V \cong \mathfrak{so}(V) \to \mathcal{C}\ell(V,q)$$

defined by

(22)
$$\rho(u \wedge v) = \frac{1}{4}(uv - vu).$$

To see that this is a homomorphism we need to see that

(23)
$$[\rho(u \wedge v), \rho(x \wedge y)] = \rho\left([u \wedge v, x \wedge y]\right)$$

We first observe the lemma.

Lemma 2.4. One has $[\rho(u \wedge v), x] = T_{u \wedge v}(x)$ for every $x \in C\ell(V, q)$.

PROOF. First, assume that $x \in V$. We use the fundamental identity uv + vu = -2q(u, v)1 a few times to see:

$$\begin{split} [\rho(u \wedge v), x] &= \frac{1}{4} (uvx - vux - xuv + xvu) \\ &= \frac{1}{2} (-vux + xvu) \\ &= \frac{1}{2} (vxu + 2q(u, x)v - vxu - 2q(v, x)u) \\ &= q(u, x)v - q(v, x)u \\ &= T_{u \wedge v}(x). \end{split}$$

From this lemma we have

$$[\rho(u \wedge v), \rho(x \wedge y)] = T_{u \wedge v}(\rho(x \wedge y)) = \rho(T_{u \wedge v}(x \wedge y)) = \rho([u \wedge v, x \wedge y])$$

2.3. Note that by proposition 2.1 that for any $v \in V$ the adjoint action Ad_v preserves the subspace $V \subset \operatorname{C}\ell(V,q)$. We define P(V,q) to be the subgroup of $\operatorname{C}\ell(V,q)^{\times}$ generated by vectors $v \in V$ with $q(v) \neq 0$. Let $SP(V,q) = P(V,q) \cap \operatorname{C}\ell^{even}(V,q)$. The group P(V,q), SP(V,q) have important subgroups.

Definition 2.5. The *pin group* of (V,q) is the subgroup $Pin(V,q) \subset P(V,q)$ generated by elements $v \in V$ with $q(v) = \pm 1$. The *spin group* of (V,q) is

(24)
$$Spin(V,q) = Pin(V,q) \cap C\ell^{even}(V,q).$$

Explicit presentation for the pin and spin groups are as follows:

$$Pin(V,q) = \{v_1 \cdots v_k \in P(V,q) \mid q(v_j) = \pm 1 \;\forall j\}$$
$$Spin(V,q) = \{v_1 \cdots v_k \in Pin(V,q) \mid k \text{ even}\}$$

From proposition 2.1, we recognize that $Ad_v = -R_v$ where R_v is the reflection across the hyperplane perpendicular to $v \in V$. Define the *twisted* adjoint action

Ad:
$$C\ell(V,q)^{\times} \to GLC\ell(V,q)$$

by the formula

(25)
$$\widetilde{\mathrm{Ad}}_{\varphi}(x) = \alpha(\varphi) x a^{-1},$$

where α is defined in 1.4. Note that \widetilde{Ad}_a is *not* an algebra automorphism, but it is still a linear automorphism. Notice that for $v \in V$ one as $\widetilde{Ad}_v = R_v$ as desired.

Proposition 2.6. Define

$$\widetilde{P}(V,q) \stackrel{\text{def}}{=} \{ \varphi \in \mathcal{C}\ell(V,q) \mid \operatorname{Im} \widetilde{\operatorname{Ad}}_{\varphi} = V \}.$$

Then the kernel of the homomorphism

$$\widetilde{\mathrm{Ad}}: \widetilde{P}(V,q) \to GL(V)$$

is the group \mathbf{k}^{\times} *of nonzero multiples of* $1 \in C\ell(V, q)$ *.*

Moreover, \widetilde{Ad} *factors through the group* $O(V,q) \subset GL(V)$ *.*

The next section is dedicated to the proof of this proposition.

2.4. For $a \in C\ell(V,q)$ write $\varphi = \varphi_+ + \varphi_-$ where $\varphi_{\pm} \in C\ell^{ev/odd}(V,q)$. Then, the condition that $\varphi \in \ker \widetilde{Ad}$ becomes the pair of equations

(26)
$$v\varphi_+ = \varphi_+ v, \quad v\varphi_- = -\varphi_- v.$$

Let $\{e_i\}$ be a basis for *V* such that $q(e_i) \neq 0$ for all *i* and $\langle e_i, e_j \rangle = 0$ for all $i \neq j$. Using the fundamental Clifford relation, we see that $\varphi_+ \in C\ell^{ev}(V,q)$ can be expressed in the form $a_0 + e_1a_1$ where a_0, a_1 are polynomial expressions in the basis elements e_2, \ldots, e_n . Since $a_0 + e_1a_1$ is even we conclude that a_0 is even and a_1 is odd. Applying the relation (26) to $v = e_1$ we see that

$$e_1a_0 + e_1^2a_1 = a_0e_1 + e_1a_1e_1$$

= $e_1a_0 - e_1^2a_1$.

Thus $e_1^2 a_1 = 0$ and so $a_1 = 0$. This implies that φ_+ is a polynomial expression in $\{e_2, \ldots, e_n\}$. Proceeding iteratively we see that φ is a polynomial expression is *none* of the basis elements, therefore $\varphi_+ \in \mathbf{k} \subset C\ell^{even}(V, q)$. Similarly, one sees that φ_- is an expression in none of the basis elements. But, since φ_- is odd this implies that $\varphi_- = 0$. Since $\varphi \neq 0$ we conclude that $\varphi \in \mathbf{k}^{\times}$. We have show ker $\widetilde{\mathrm{Ad}} = \mathbf{k}^{\times} \subset \widetilde{P}(V, q)$.

To complete the proof we introduce the norm mapping. Let *N* be the linear endomorphism on the Clifford algebra defined by $N(\varphi) = \varphi \cdot \alpha(\varphi^t)$. Note that

$$egin{aligned} N(arphi\psi) &= arphi\psilpha(\psi^tarphi^t) \ &= arphi\psilpha(\psi^t)lpha(arphi^t) \ &= arphi N(\psi)lpha(arphi^t). \end{aligned}$$

So, we cannot yet conclude that *N* is compatible with the algebra structure.

Observe for $v \in V$ that $N(v) = -v^2 = q(v)$. Suppose $\varphi \in \widetilde{P}(V, q)$, so that (27) $\alpha(\varphi)v\varphi^{-1} \in V$

for all $v \in V$. Applying the transpose to this element, which is the identity of course, leads to

(28)
$$(\varphi^t)^{-1} v \alpha(\varphi^t) = \alpha(\varphi) v \varphi^{-1}$$

Rearranging, we see that

$$\begin{split} v &= \varphi^t \alpha(\varphi) v \varphi^{-1}(\alpha(\varphi^t))^{-1} = \alpha \left(\alpha(\varphi^t) \varphi \right) v \left(\alpha(\varphi^t) \varphi \right)^{-1} \\ &= \widetilde{\mathrm{Ad}}_{\alpha(\varphi^t) \varphi}(v). \end{split}$$

Hence $\alpha(\varphi^t)\varphi \in \ker \widetilde{Ad} = \mathbf{k}^{\times}$. We conclude that *N* factors through the group of units $\mathbf{k}^{\times} \subset C\ell(V, q)^{\times}$:

(29)
$$N: \widetilde{P}(V,q) \to \mathbf{k}^{\times}.$$

This finally allows us to see that *N* is compatible with the algebra structure. Indeed, since \mathbf{k}^{\times} is in the center of $C\ell(V,q)$ we have that $N(\varphi\psi) = \varphi N(\psi)\alpha(\varphi^t) = N(\varphi)N(\psi)$.

Notice that $N(\alpha \varphi) = \alpha(\varphi)\varphi^t = N(\varphi)$ for all $\varphi \in \widetilde{P}(V, q)$. Then

$$q(\widetilde{\mathrm{Ad}}_{\varphi}(v)) = N(\widetilde{\mathrm{Ad}}_{\varphi}(v)) = N(\alpha(\varphi)v\varphi^{-1})$$
$$= N(\alpha\varphi)N(v)N(\varphi)^{-1}$$
$$= q(v).$$

We conclude that \widetilde{Ad}_{φ} preserves q for each $\varphi \in \widetilde{P}(V, q)$ so it is an orthogonal transformation.

2.5. By restricting along $P(V,q) \subset \widetilde{P}(V,q)$, proposition 2.6 prescribes a group homomorphism

(30)
$$\operatorname{Ad}: P(V,q) \to O(V,q).$$

We study the further restriction to Pin(V,q). The Cartan-Dieudonné theorem implies that the restriction of this homomorphism to Pin(V,q) is surjective. Similarly, the restriction of \widetilde{Ad} to Spin(V,q) defines a surjective homomorphism

(31) Ad:
$$Spin(V,q) \rightarrow SO(V,q)$$
.

Proposition 2.7. Suppose $\mathbf{k} = \mathbf{R}$. The following sequences are exact

(32)
$$1 \rightarrow \mathbb{Z}/2 \rightarrow Pin(V,q) \rightarrow O(V,q) \rightarrow 1$$

and

(33)
$$1 \rightarrow \mathbb{Z}/2 \rightarrow Spin(V,q) \rightarrow SO(V,q) \rightarrow 1.$$

PROOF. Cartan and Dieudonné did the hard part of surjectivity. From proposition 2.6 if $a \in P(V, q)$ and $Ad_a = 1$ then $a = a_0 1$, $a_0 \in \mathbb{R}^{\times}$ If a is in Pin(V, q) then we also have $q(a) = \pm 1$, so $a_0 = \pm 1$. The same argument holds for Spin(V, q).

2.6. Let's focus on the special case $V = \mathbf{R}^n$ with $q = \sum x_i^2$ the standard positive definite inner product. We let $C\ell_n \stackrel{\text{def}}{=} C\ell(\mathbf{R}^n, \sum x_i^2)$, $SO(n) = SO(\mathbf{R}^n, \sum x_i^2)$, and $Spin(n) = Spin(\mathbf{R}^n, \sum x_i^2)$. By the above, for $n \ge 3$ there is a short exact sequence of Lie groups

(34)
$$1 \rightarrow \mathbb{Z}/2 \rightarrow Spin(n) \rightarrow SO(n) \rightarrow 1.$$

THEOREM 2.8. For $n \ge 3$, the exact sequence (34) represents the universal double cover of SO(n).

Recall that the universal double cover of a connected topological group G is a covering space

$$(35) 1 \to \pi_1(H) \to G \to H \to 1$$

where *G* is the group of equivalence classes of homotopy classes of paths in *H* with pointwise multiplication. For Lie groups, the universal cover is even more constrained. A basic fact from Lie theory is that any Lie algebra g is the Lie algebra of a simply connected Lie group *G*. Thus, the universal cover of a connected Lie group *H* is a simply connected Lie group *G* together with a homomorphism $\rho: G \to H$ which induces an isomorphism at the level of Lie algebras. Already from the short exact sequence of Lie groups in proposition 2.7 we see that \widetilde{Ad} induces an isomorphism at the level of Lie algebras.

To prove the theorem we proceed with the following steps.

- (1) First, we will show that $\pi_1(SO(n)) = \pi_1(SO(n+1))$ for $n \ge 3$.
- (2) Next, we will show that $\pi_1(SO(3)) = \mathbb{Z}/2$ by showing Spin(3) = SU(2).
- (3) Finally, we will argue that $\pi_1(Spin(n)) = 0$ for $n \ge 3$, thus completing the proof.

For (1) we use the long exact sequence in homotopy groups associated to the fibration

$$(36) SO(n) \hookrightarrow SO(n+1) \to S^n$$

induced from embedding SO(n) block diagonally into SO(n + 1).

For (2) we first construct an explicit isomorphism between the Lie algebra $\mathfrak{su}(2)$ of SU(2) and \mathbb{R}^3 . Explicitly $\mathfrak{su}(2)$ is the Lie algebra of complex 2 × 2 matrices of the form

(37)
$$\begin{pmatrix} a & -\overline{b} \\ b & -a \end{pmatrix}.$$

In terms of matrices, the standard positive definite inner product on \mathbf{R}^3 is

$$\frac{1}{2}\operatorname{Tr}(XY^{\dagger}).$$

Now, define the homomorphism

(39)
$$\rho: SU(2) \to GL(\mathfrak{su}(2)) \cong GL(\mathbb{R}^3)$$

by sending the matrix A to $X \mapsto AXA^{-1}$. This matrix factors through SO(3). It is surjective and its kernel is $\mathbb{Z}/2$. Since SU(2) is diffeomorphic to S^3 it follows that $Spin(3) \cong SU(2)$ and $\pi_1(SO(3)) =$ With this identification $\rho = \widetilde{Ad}$.

Finally, to see (3) we recall that covering space theory implies that $\pi_1(Spin(n))$ is a finite index sugroup of **Z**/2. So, for $n \ge 3$ one sees that $\pi_1(Spin(n))$ is trivial.

3. Low-dimensional examples

We will present some basic low-dimensional examples of real Clifford algebras and spin groups. We let $C\ell_{r,s}$ denote the Clifford algebra of the vector space \mathbf{R}^{r+s} associated to the quadratic form of signature (r, s). (In terms of our previous notation $C\ell_{n,0} = C\ell_n$.)

3.1. The Clifford algebra $C\ell_1$ is generated by elements 1, *e* with the relation $e^2 = -1$. Thus $C\ell_1 \cong \mathbf{C}$ as real associative algebras. Under this identification, $C\ell_1^{ev} = \mathbf{R}$ and $C\ell_1^{odd} = i\mathbf{R}$. The transpose operation is the identity. The map α is complex conjugation $\alpha(z) = \overline{z}$. The group of units is the nonzero complex numbers under multiplication $C\ell_1^{\times} = \mathbf{C}^{\times}$. The norm map is $N(z) = z\overline{z}$.

We know from the exact sequences from proposition 2.7 that

(40)
$$Pin(1) \simeq \mathbf{Z}/4, \quad Spin(1) \simeq \mathbf{Z}/2.$$

Let's see this explicitly. Per the isomorphisms of the previous section, we can identify Pin(1) with the group of elements $z = a + ib \in \mathbb{C}^{\times}$ such that $a = \pm 1, b = 0$ or $a = 0, b = \pm 1$. Thus $Pin(1) = \{1, -1, i, -i\} = \mathbb{Z}/4$ and $Spin(1) = \{1, -1\} = \mathbb{Z}/2$.

3.2. Next we look at $C\ell_2$. Let $\{e_1, e_2\}$ be an orthonormal basis for $V = \mathbb{R}^2$. Then $C\ell_2$ is spanned by the basis $\{1, e_1, e_2, e_1e_2\}$ subject to the relations

(41)
$$e_1e_2 = -e_1e_2, \quad e_1^2 = e_2^2 = -1, \quad (e_1e_2)^2 = -1$$

Define the real linear map

$$(42) \qquad \Phi \colon \mathcal{C}\ell_2 \to \mathbf{H}$$

by the rules $e_1 \mapsto i, e_2 \mapsto j, e_1e_2 \mapsto k$. It is immediate to check that this is an isomorphism of real algebras. Thus $C\ell_2$ is isomorphic to the quaternions, which is of course generated over **R** by {1, i, j, k} satisfying the usual conditions.

In quaternion terms the transpose is

(43)
$$1^t = 1, \quad i^t = i, \quad j^t = j, \quad k^t = -k.$$

The involution α is

(44)
$$\alpha(1) = 1, \quad \alpha(i) = -i, \quad \alpha(j) = -j, \quad \alpha(k) = k.$$

In particular, 1, k are even and i, j are odd. The norm is

(45)
$$N(1) = N(i) = N(j) = N(k) = 1.$$

The group Pin(2) thus consists of elements

(46)
$$a1 + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}, \quad a, b, c, d \in \mathbf{R}$$

such that

- Either b = c = 0 and $a^2 + d^2 = 1$, or
- a = d = 0 and $b^2 + c^2 = 1$.

We conclude that $Pin(2) \simeq U(1) \sqcup U(1)$ and $Spin(2) \simeq U(1)$.

In quaternion notation, the group $Spin(2) \simeq U(1)$ consists of elements $a1 + dk \subset$ **H** satisfying $a^2 + d^2 = 1$. In terms of a real orthonormal basis of **R**², this group is presented as the elements

$$(47) x = a1 + be_1e_2$$

satisfying $N(x) = a^2 + b^2 = 1$.

3.3. The Clifford algebra $Cl_{0,2}$ is spanned by vectors 1, *x*, *y*, *xy* which satisfy

(48)
$$x^2 = y^2 = 1, \quad xy = -yx.$$

The correspondence

$$1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$y \mapsto \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

sets up an isomorphism of algebras betwween $Cl_{0,2}$ and the algebra of 2×2 real matrices.

For future reference, if **k** is a field, we will denote $\mathbf{k}(n)$ for the algebra of $n \times n$ matrices with coefficients in **k**.

Thus $C\ell_{0,2} \cong \mathbf{R}(2)$.

3.4. The Clifford algebra $C\ell_{1,1}$ is spanned by vectors 1, *x*, *y*, *xy* which satisfy

(49)
$$x^2 = -y^2 = 1, \quad xy = -yx.$$

The correspondence

$$1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$y \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

sets up an isomorphism of algebras betwween $Cl_{1,1}$ and the algebra of 2 × 2 real matrices.

4. Classification of Clifford algebras

The main result of this section is to prove the following periodicity result for Clifford algebras

(50)
$$C\ell_{n+4} \simeq C\ell_n \otimes C\ell_4.$$

4.1.

Proposition 4.1. There are isomorphism

(51)
$$C\ell_{n+2,0} \simeq C\ell_{0,n} \otimes C\ell_{2,0}$$
$$C\ell_{0,n+2} \simeq C\ell_{n,0} \otimes C\ell_{0,2}$$
$$C\ell_{n+1,m+1} \simeq C\ell_{n,m} \otimes C\ell_{1,1}.$$

The tensor product is the ordinary (ungraded) tensor product of algebras.

PROOF. Let $\{e_i\}$ denote an orthonormal basis for \mathbb{R}^{n+2} with respect to the standard positive definite form. Let $\{e'_i\}$ be an orthornormal basis for \mathbb{R}^n which we view as generators for the algebra $C\ell_{0,n}$. In particular $e'_ie'_i = 1$ (note the lack of sign). Let $\{e''_1, e''_2\}$ be an orthonormal basis for \mathbb{R}^2 which we view as generators for $C\ell_{2,0}$. Define the linear map

(52)
$$f: \mathbf{R}^{n+2} \to C\ell_{0,n} \otimes C\ell_{2,0}$$

by the following rules. If i = 1, ..., n then define $f(e_i) = e'_i \otimes e''_1 e''_2$. Additionally $f(e_{n+1}) = 1 \otimes e''_1$ and $f(e_{n+2}) = 1 \otimes e''_2$. This map f satisfies $f(v)^2 = -||v||^2$ where ||-|| is the ordinary norm on \mathbb{R}^{n+2} . Thus f extends to a homomorphism $\tilde{f} : \mathbb{C}\ell_{n+2,0} \to \mathbb{C}\ell_{0,n} \otimes \mathbb{C}\ell_{2,0}$. Since f hits all generators it follows that \tilde{f} is surjective. By counting dimensions we see its an isomorphism.

4.2. Using the proposition of the previous section we can prove the stated periodicity result.

THEOREM 4.2. *There is an isomorphism of real algebras*

(53)
$$C\ell_{n+4} \simeq C\ell_n \otimes C\ell_4$$

for every n. The tensor product is the ordinary (ungraded) tensor product.

We note that there are similar periodicity results for the non-definite signature Clifford algebras.

PROOF. From the proposition of the previous subsection

(54)
$$C\ell_{4,0} \simeq C\ell_{0,2} \otimes C\ell_{2,0} \simeq \mathbf{H} \otimes \mathbf{R}(2) \simeq \mathbf{H}(2) \simeq C\ell_{2,0} \otimes C\ell_{0,2} \simeq C\ell_{0,4}$$

Thus using the proposition again we have

(55)

$$C\ell_n \otimes C\ell_{4,0} \simeq C\ell_n \otimes C\ell_{0,2} \otimes C\ell_{2,0}$$

$$\simeq C\ell_{0,n+2} \otimes C\ell_{2,0}$$

$$\simeq C\ell_{n+4,0}$$

as desired.

4.3. From the theorem we see that to describe explicitly $C\ell_n$ for any n it suffices to know $C\ell_0 = \mathbf{k}, C\ell_1 = \mathbf{C}, C\ell_2 = \mathbf{H}, C\ell_3$ and $C\ell_4$. We already computed $C\ell_4 = \mathbf{H}(2)$ in the proof of the theorem. Finally $C\ell_3 = C\ell_{0,1} \otimes C\ell_{2,0} = \mathbf{H} \oplus \mathbf{H}$.

References

[LM89] H. B. Lawson Jr. and M.-L. Michelsohn. Spin geometry. Vol. 38. Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1989, pp. xii+427.