
Clifford algebra

1. Basic definitions

In this note we introduce the rudiments of Clifford algebra. For more details we
refer to [LM89, Chapter I].

1.1. Let k be a field (with characteristic different from 2) and let V be a k-vector
space. A quadratic form is a symmetric, bilinear map ⟨−,−⟩ : V × V → k which is
non-degenerate in the sense that ⟨v, w⟩ = 0 for all w ∈ V implies v = 0. We will write
q(v) = ⟨v, v⟩ in what follows.

The Clifford algebra Cℓ(V, q) associated to V is the quotient of the tensor algebra

(1) T(V) = ⊕k≥0V⊗k

by the two-sided ideal generated by elements

(2) v ⊗ v − q(v) · 1 , v ∈ V.

Notice that the relation v2 = −q(v)1, for all v ∈ V, can be equivalently written as
the relation

(3) v · w + w · v = −2⟨v, w⟩1

for all v, w ∈ V.

Proposition 1.1. The Clifford algebra Cℓ(V, q) is the universal algebra for which:

• there is an injection i : V ↪→ Cℓ(V, q),
• let ϕ : V → A be a linear map of V into a (unital) k-algebra A such that

ϕ(x)2 = −q(x)1.

Then there exists a unique homomorphism ϕ̃ : Cℓ(V, q) → A such that ϕ̃ ◦ i = ϕ.

The orthogonal group O(V, q) are the linear automorphisms of V which preserve
q. If f : V → V is such an automorphism then, f (v)2 = −q( f (v))1 = q(v)1 in Cℓ(V, q)
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for all v ∈ V. Thus f defines a unique algebra homomorphism f̃ : Cℓ(V, q) → Cℓ(V, q)
with the property that f̃ |V = f . Moreover, since f is bijective so is f̃ . Thus we have
constructed a group embedding

(4) O(V, q) ↪→ Aut Cℓ(V, q).

In fact, the group lies within the subgroup of inner automorphisms.

1.2. A filtered algebra is an algebra A with an exhaustive sequence of subspaces

0 = F−1A ⊂ F0A ⊂ · · · ⊂ FℓA ⊂ · · · ⊂ F∞ A = A

such that if a ∈ Fp A, b ∈ Fq A then ab ∈ Fp+q A.

Let A = {F•A} be a filtered algebra. The associated graded gr A has underlying
vector space

gr A = ⊕k≥0Fk A/Fk−1A.

The product on A defines a product on gr A, giving gr A the structure of an algebra
for which the canonical map A → gr A is a homomorphism.

There is a filtration on the tensor algebra T(V) defined by

(5) FpT(V)
def
= ⊕k≤pFkV.

This induces a filtration on the Clifford algebra Cℓ(V, q) such that

(6) gr Cℓ(V, q) ∼= ∧V,

where ∧V is the exterior algebra on V. This implies the following.

Lemma 1.2. Suppose {ei} is a basis for V. Then

ei1 · · · eik ,

where i1 < · · · < ik, k ≥ 0, form a basis for Cℓ(V, q). In particular, dim Cℓ(V, q) = 2dim V .

1.3. Let Cℓev,odd(V, q) be the images of

⊕i≥0V⊗2i, ⊕i≥0V⊗2i+1

in Cℓ(V, q), respectively.

Proposition 1.3. Both Cℓev,odd(V, q) are subalgebras of Cℓ(V, q) and

(7) Cℓ(V, q) = Cℓev(V, q)⊕ Cℓodd(V, q).
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Furthermore, the product decomposes as

Cℓev(V, q)× Cℓev(V, q) → Cℓev(V, q)

Cℓev(V, q)× Cℓodd(V, q) → Cℓodd(V, q)

Cℓodd(V, q)× Cℓev(V, q) → Cℓodd(V, q)

Cℓodd(V, q)× Cℓodd(V, q) → Cℓev(V, q).

The axioms of the above proposition characterize what is called a Z/2 graded
algebra, or superalgebra. Notice that ∧V is naturally a Z/2 graded algebra, and the
canonical homomorphism Cℓ(V, q) → ∧V preserves the Z/2 gradings.

Proposition 1.4. There is a natural isomorphism

(8) Cℓ(V1 ⊕ V2, q1 ⊕ q2) ∼= Cℓ(V1, q1)⊗gr Cℓ(V2, q2)

where the tensor product is the graded tensor product (see below) of Z/2 graded algebras.

The graded tensor product A ⊗gr B of Z/2 graded algebras A, B differs from the
usual tensor product of plain ungraded algebras. As a vector space, it does agree with
the standard tensor product

A ⊗gr B = Aev ⊗ Bev ⊕ Aev ⊗ Bodd ⊕ Aodd ⊗ Bev ⊕ Aodd ⊕ Bodd.

The product, on the other hand, is defined by

(a ⊗ x) · (y ⊗ b) = (−1)|x||y|ay ⊗ xb

where a, y ∈ A and b, x ∈ B.

1.4. Here is an alternative description of the Z/2 grading. Let iq : V ↪→ Cℓ(V, q)
denote the canonical morphism. Consider the automorphism

(9) α : Cℓ(V, q) → Cℓ(V, q)

which extends the linear map v 7→ −v. Since α2 = 1Cℓ(V,q) we have a decomposition

(10) Cℓev,odd(V, q) = {x ∈ Cℓ(V, q) | α(x) = (−1)ev,oddx}.

These are exactly the even/odd subspaces from above.
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1.5. As another example of an involution consider the reversal of order map

(11) v1 ⊗ · · · ⊗ vk 7→ vk ⊗ · · · ⊗ v1.

This preserves the defining ideal so descends to a linear automorphism of the Clifford
algebra. This automorphism is not compatible with the algebra structure in the usual
sense. It is an anti-automorphism in the sense that (φψ)t = ψt φt.

2. Pin and spin groups

2.1. Given any algebra A we let A× ⊂ A denote the group of units; the group of
elements which admit a multiplicative inverse. There is a group homomorphism

(12) Ad: A× ↪→ Aut A,

defined by Ada : x 7→ axa−1.

In the case of the Clifford algebra A = Cℓ(V, q) (and k = R or C) the group of
units Cℓ(V, q)× is a Lie group of dimension 2n. The following is a useful computation.

Proposition 2.1. Suppose v ∈ V satisfies q(v) ̸= 0. Then

(13) −Adv(x) = x − 2
⟨v, x⟩
⟨v, v⟩v.

The Lie algebra Lie Cℓ(V, q) is isomorphic to Cℓ(V, q) as a vector space and the
bracket is the commutator

(14) [x, y] def
= xy − yx.

(In fact, any algebra A defines a Lie algebra by the commutator.) The derivative of the
group-level adjoint defines a Lie algebra homomorphism

(15) ad : Lie Cℓ(V, q) → Der Cℓ(V, q),

given by ady(x) = [y, x].

2.2. The orthogonal group O(V, q) ⊂ GL(V) is the subgroup of linear isomor-
phisms A : V → V which preserve the bilinear form q(Av) = q(v). An easy calcula-
tion implies that if A ∈ O(V, q) then det A = ±1. The subgroup SO(V, q) ⊂ O(V, q)
consists of elements with det A = 1. This subgroup is connected.

The Lie algebra of SO(V, q) is the Lie algebra of skew-symmetric matrices

(16) so(V) = {A : V → V | ⟨Av, w⟩ = −⟨v, Aw⟩}.
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Proposition 2.2. The map

(17) T : ∧2 V → so(V)

which sends x ∧ y ∈ ∧2V to the endomorphism

(18) Tx∧y(v) = ⟨x, v⟩y − ⟨y, v⟩x

is an isomorphism.

Explicitly, matrix commutator corresponds to the operation on ∧2V:

(19) [u ∧ v, x ∧ y] = ⟨u, x⟩v ∧ y − ⟨u, y⟩v ∧ x − ⟨v, x⟩u ∧ y + ⟨v, y⟩u ∧ x.

Thus, with this bracket, we can identify ∧2V ∼= so(V) as Lie algebras. Notice that we
can write

(20) [u ∧ v, x ∧ y] = Tu∧v(x) ∧ y − Tu∧v(y) ∧ x.

Proposition 2.3. The Lie algebra so(V) naturally embeds into the Clifford algebra via the
homomorphism

(21) ρ : ∧2 V ∼= so(V) → Cℓ(V, q)

defined by

(22) ρ(u ∧ v) =
1
4
(uv − vu).

To see that this is a homomorphism we need to see that

(23) [ρ(u ∧ v), ρ(x ∧ y)] = ρ ([u ∧ v, x ∧ y])

We first observe the lemma.

Lemma 2.4. One has [ρ(u ∧ v), x] = Tu∧v(x) for every x ∈ Cℓ(V, q).

PROOF. First, assume that x ∈ V. We use the fundamental identity uv + vu =

−2q(u, v)1 a few times to see:

[ρ(u ∧ v), x] =
1
4
(uvx − vux − xuv + xvu)

=
1
2
(−vux + xvu)

=
1
2
(vxu + 2q(u, x)v − vxu − 2q(v, x)u)

= q(u, x)v − q(v, x)u

= Tu∧v(x).

□
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From this lemma we have

[ρ(u ∧ v), ρ(x ∧ y)] = Tu∧v(ρ(x ∧ y)) = ρ(Tu∧v(x ∧ y)) = ρ ([u ∧ v, x ∧ y]) .

2.3. Note that by proposition 2.1 that for any v ∈ V the adjoint action Adv pre-
serves the subspace V ⊂ Cℓ(V, q). We define P(V, q) to be the subgroup of Cℓ(V, q)×

generated by vectors v ∈ V with q(v) ̸= 0. Let SP(V, q) = P(V, q) ∩ Cℓeven(V, q). The
group P(V, q), SP(V, q) have important subgroups.

Definition 2.5. The pin group of (V, q) is the subgroup Pin(V, q) ⊂ P(V, q) generated
by elements v ∈ V with q(v) = ±1. The spin group of (V, q) is

(24) Spin(V, q) = Pin(V, q) ∩ Cℓeven(V, q).

Explicit presentation for the pin and spin groups are as follows:

Pin(V, q) = {v1 · · · vk ∈ P(V, q) | q(vj) = ±1 ∀j}

Spin(V, q) = {v1 · · · vk ∈ Pin(V, q) | k even}

From proposition 2.1, we recognize that Adv = −Rv where Rv is the reflection
across the hyperplane perpendicular to v ∈ V. Define the twisted adjoint action

Ãd : Cℓ(V, q)× → GL Cℓ(V, q)

by the formula

(25) Ãdφ(x) = α(φ)xa−1,

where α is defined in 1.4. Note that Ãda is not an algebra automorphism, but it is still
a linear automorphism. Notice that for v ∈ V one as Ãdv = Rv as desired.

Proposition 2.6. Define

P̃(V, q) def
= {φ ∈ Cℓ(V, q) | Im Ãdφ = V}.

Then the kernel of the homomorphism

Ãd : P̃(V, q) → GL(V)

is the group k× of nonzero multiples of 1 ∈ Cℓ(V, q).

Moreover, Ãd factors through the group O(V, q) ⊂ GL(V).

The next section is dedicated to the proof of this proposition.
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2.4. For a ∈ Cℓ(V, q) write φ = φ+ + φ− where φ± ∈ Cℓev/odd(V, q). Then, the
condition that φ ∈ ker Ãd becomes the pair of equations

(26) vφ+ = φ+v, vφ− = −φ−v.

Let {ei} be a basis for V such that q(ei) ̸= 0 for all i and ⟨ei, ej⟩ = 0 for all i ̸= j.
Using the fundamental Clifford relation, we see that φ+ ∈ Cℓev(V, q) can be expressed
in the form a0 + e1a1 where a0, a1 are polynomial expressions in the basis elements
e2, . . . , en. Since a0 + e1a1 is even we conclude that a0 is even and a1 is odd. Applying
the relation (26) to v = e1 we see that

e1a0 + e2
1a1 = a0e1 + e1a1e1

= e1a0 − e2
1a1.

Thus e2
1a1 = 0 and so a1 = 0. This implies that φ+ is a polynomial expression in

{e2, . . . , en}. Proceeding iteratively we see that φ is a polynomial expression is none of
the basis elements, therefore φ+ ∈ k ⊂ Cℓeven(V, q). Similarly, one sees that φ− is an
expression in none of the basis elements. But, since φ− is odd this implies that φ− = 0.
Since φ ̸= 0 we conclude that φ ∈ k×. We have show ker Ãd = k× ⊂ P̃(V, q).

To complete the proof we introduce the norm mapping. Let N be the linear endo-
morphism on the Clifford algebra defined by N(φ) = φ · α(φt). Note that

N(φψ) = φψα(ψt φt)

= φψα(ψt)α(φt)

= φN(ψ)α(φt).

So, we cannot yet conclude that N is compatible with the algebra structure.

Observe for v ∈ V that N(v) = −v2 = q(v). Suppose φ ∈ P̃(V, q), so that

(27) α(φ)vφ−1 ∈ V

for all v ∈ V. Applying the transpose to this element, which is the identity of course,
leads to

(28) (φt)−1vα(φt) = α(φ)vφ−1.

Rearranging, we see that

v = φtα(φ)vφ−1(α(φt))−1 = α
(
α(φt)φ

)
v
(
α(φt)φ

)−1

= Ãdα(φt)φ(v).
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Hence α(φt)φ ∈ ker Ãd = k×. We conclude that N factors through the group of units
k× ⊂ Cℓ(V, q)×:

(29) N : P̃(V, q) → k×.

This finally allows us to see that N is compatible with the algebra structure. Indeed,
since k× is in the center of Cℓ(V, q) we have that N(φψ) = φN(ψ)α(φt) = N(φ)N(ψ).

Notice that N(αφ) = α(φ)φt = N(φ) for all φ ∈ P̃(V, q). Then

q(Ãdφ(v)) = N(Ãdφ(v)) = N(α(φ)vφ−1)

= N(αφ)N(v)N(φ)−1

= q(v).

We conclude that Ãdφ preserves q for each φ ∈ P̃(V, q) so it is an orthogonal transfor-
mation.

2.5. By restricting along P(V, q) ⊂ P̃(V, q), proposition 2.6 prescribes a group
homomorphism

(30) Ãd : P(V, q) → O(V, q).

We study the further restriction to Pin(V, q). The Cartan-Dieudonné theorem implies
that the restriction of this homomorphism to Pin(V, q) is surjective. Similarly, the
restriction of Ãd to Spin(V, q) defines a surjective homomorphism

(31) Ãd : Spin(V, q) → SO(V, q).

Proposition 2.7. Suppose k = R. The following sequences are exact

(32) 1 → Z/2 → Pin(V, q) → O(V, q) → 1

and

(33) 1 → Z/2 → Spin(V, q) → SO(V, q) → 1.

PROOF. Cartan and Dieudonné did the hard part of surjectivity. From proposition
2.6 if a ∈ P(V, q) and Ãda = 1 then a = a01, a0 ∈ R× If a is in Pin(V, q) then we also
have q(a) = ±1, so a0 = ±1. The same argument holds for Spin(V, q). □
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2.6. Let’s focus on the special case V = Rn with q = ∑ x2
i the standard posi-

tive definite inner product. We let Cℓn
def
= Cℓ(Rn, ∑ x2

i ), SO(n) = SO(Rn, ∑ x2
i ), and

Spin(n) = Spin(Rn, ∑ x2
i ). By the above, for n ≥ 3 there is a short exact sequence of

Lie groups

(34) 1 → Z/2 → Spin(n) → SO(n) → 1.

THEOREM 2.8. For n ≥ 3, the exact sequence (34) represents the universal double cover
of SO(n).

Recall that the universal double cover of a connected topological group G is a
covering space

(35) 1 → π1(H) → G → H → 1

where G is the group of equivalence classes of homotopy classes of paths in H with
pointwise multiplication. For Lie groups, the universal cover is even more constrained.
A basic fact from Lie theory is that any Lie algebra g is the Lie algebra of a simply con-
nected Lie group G. Thus, the universal cover of a connected Lie group H is a simply
connected Lie group G together with a homomorphism ρ : G → H which induces an
isomorphism at the level of Lie algebras. Already from the short exact sequence of Lie
groups in proposition 2.7 we see that Ãd induces an isomorphism at the level of Lie
algebras.

To prove the theorem we proceed with the following steps.

(1) First, we will show that π1(SO(n)) = π1(SO(n + 1)) for n ≥ 3.
(2) Next, we will show that π1(SO(3)) = Z/2 by showing Spin(3) = SU(2).
(3) Finally, we will argue that π1(Spin(n)) = 0 for n ≥ 3, thus completing the

proof.

For (1) we use the long exact sequence in homotopy groups associated to the fibra-
tion

(36) SO(n) ↪→ SO(n + 1) → Sn

induced from embedding SO(n) block diagonally into SO(n + 1).

For (2) we first construct an explicit isomorphism between the Lie algebra su(2) of
SU(2) and R3. Explicitly su(2) is the Lie algebra of complex 2× 2 matrices of the form

(37)

(
a −b
b −a

)
.
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In terms of matrices, the standard positive definite inner product on R3 is

(38)
1
2

Tr(XY†).

Now, define the homomorphism

(39) ρ : SU(2) → GL(su(2)) ∼= GL(R3)

by sending the matrix A to X 7→ AXA−1. This matrix factors through SO(3). It is
surjective and its kernel is Z/2. Since SU(2) is diffeomorphic to S3 it follows that
Spin(3) ∼= SU(2) and π1(SO(3)) = With this identification ρ = Ãd.

Finally, to see (3) we recall that covering space theory implies that π1(Spin(n)) is
a finite index sugroup of Z/2. So, for n ≥ 3 one sees that π1(Spin(n)) is trivial.

3. Low-dimensional examples

We will present some basic low-dimensional examples of real Clifford algebras
and spin groups. We let Cℓr,s denote the Clifford algebra of the vector space Rr+s

associated to the quadratic form of signature (r, s). (In terms of our previous notation
Cℓn,0 = Cℓn.)

3.1. The Clifford algebra Cℓ1 is generated by elements 1, e with the relation e2 =

−1. Thus Cℓ1
∼= C as real associative algebras. Under this identification, Cℓev

1 = R and
Cℓodd

1 = iR. The transpose operation is the identity. The map α is complex conjugation
α(z) = z. The group of units is the nonzero complex numbers under multiplication
Cℓ×1 = C×. The norm map is N(z) = zz.

We know from the exact sequences from proposition 2.7 that

(40) Pin(1) ≃ Z/4, Spin(1) ≃ Z/2.

Let’s see this explicitly. Per the isomorphisms of the previous section, we can identify
Pin(1) with the group of elements z = a + ib ∈ C× such that a = ±1, b = 0 or
a = 0, b = ±1. Thus Pin(1) = {1,−1, i,−i} = Z/4 and Spin(1) = {1,−1} = Z/2.

3.2. Next we look at Cℓ2. Let {e1, e2} be an orthonormal basis for V = R2. Then
Cℓ2 is spanned by the basis {1, e1, e2, e1e2} subject to the relations

(41) e1e2 = −e1e2, e2
1 = e2

2 = −1, (e1e2)
2 = −1.

Define the real linear map

(42) Φ : Cℓ2 → H
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by the rules e1 7→ i, e2 7→ j, e1e2 7→ k. It is immediate to check that this is an isomor-
phism of real algebras. Thus Cℓ2 is isomorphic to the quaternions, which is of course
generated over R by {1, i, j, k} satisfying the usual conditions.

In quaternion terms the transpose is

(43) 1t = 1, it = i, jt = j, kt = −k.

The involution α is

(44) α(1) = 1, α(i) = −i, α(j) = −j, α(k) = k.

In particular, 1, k are even and i, j are odd. The norm is

(45) N(1) = N(i) = N(j) = N(k) = 1.

The group Pin(2) thus consists of elements

(46) a1 + bi+ cj+ dk, a, b, c, d ∈ R

such that

• Either b = c = 0 and a2 + d2 = 1, or
• a = d = 0 and b2 + c2 = 1.

We conclude that Pin(2) ≃ U(1) ⊔ U(1) and Spin(2) ≃ U(1).

In quaternion notation, the group Spin(2) ≃ U(1) consists of elements a1 + dk ⊂
H satisfying a2 + d2 = 1. In terms of a real orthonormal basis of R2, this group is
presented as the elements

(47) x = a1 + be1e2

satisfying N(x) = a2 + b2 = 1.

3.3. The Clifford algebra Cl0,2 is spanned by vectors 1, x, y, xy which satisfy

(48) x2 = y2 = 1, xy = −yx.
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The correspondence

1 7→
(

1 0
0 1

)

x 7→
(

1 0
0 −1

)

y 7→
(

0 1
1 0

)

sets up an isomorphism of algebras betwween Cl0,2 and the algebra of 2 × 2 real ma-
trices.

For future reference, if k is a field, we will denote k(n) for the algebra of n × n
matrices with coefficients in k.

Thus Cℓ0,2 ∼= R(2).

3.4. The Clifford algebra Cℓ1,1 is spanned by vectors 1, x, y, xy which satisfy

(49) x2 = −y2 = 1, xy = −yx.

The correspondence

1 7→
(

1 0
0 1

)

x 7→
(

1 0
0 −1

)

y 7→
(

0 1
−1 0

)

sets up an isomorphism of algebras betwween Cl1,1 and the algebra of 2 × 2 real ma-
trices.

4. Classification of Clifford algebras

The main result of this section is to prove the following periodicity result for Clif-
ford algebras

(50) Cℓn+4 ≃ Cℓn ⊗ Cℓ4.

12



4.1.

Proposition 4.1. There are isomorphism

Cℓn+2,0 ≃ Cℓ0,n ⊗ Cℓ2,0

Cℓ0,n+2 ≃ Cℓn,0 ⊗ Cℓ0,2

Cℓn+1,m+1 ≃ Cℓn,m ⊗ Cℓ1,1.

(51)

The tensor product is the ordinary (ungraded) tensor product of algebras.

PROOF. Let {ei} denote an orthonormal basis for Rn+2 with respect to the standard
positive definite form. Let {e′i} be an orthornormal basis for Rn which we view as
generators for the algebra Cℓ0,n. In particular e′ie

′
i = 1 (note the lack of sign). Let

{e′′1 , e′′2} be an orthonormal basis for R2 which we view as generators for Cℓ2,0. Define
the linear map

(52) f : Rn+2 → Cℓ0,n ⊗ Cℓ2,0

by the following rules. If i = 1, . . . , n then define f (ei) = e′i ⊗ e′′1 e′′2 . Additionally
f (en+1) = 1 ⊗ e′′1 and f (en+2) = 1 ⊗ e′′2 . This map f satisfies f (v)2 = −∥v∥2 where
∥− ∥ is the ordinary norm on Rn+2. Thus f extends to a homomorphism f̃ : Cℓn+2,0 →
Cℓ0,n ⊗ Cℓ2,0. Since f hits all generators it follows that f̃ is surjective. By counting
dimensions we see its an isomorphism. □

4.2. Using the proposition of the previous section we can prove the stated peri-
odicity result.

THEOREM 4.2. There is an isomorphism of real algebras

(53) Cℓn+4 ≃ Cℓn ⊗ Cℓ4

for every n. The tensor product is the ordinary (ungraded) tensor product.

We note that there are similar periodicity results for the non-definite signature
Clifford algebras.

PROOF. From the proposition of the previous subsection

(54) Cℓ4,0 ≃ Cℓ0,2 ⊗ Cℓ2,0 ≃ H ⊗ R(2) ≃ H(2) ≃ Cℓ2,0 ⊗ Cℓ0,2 ≃ Cℓ0,4

Thus using the proposition again we have

Cℓn ⊗ Cℓ4,0 ≃ Cℓn ⊗ Cℓ0,2 ⊗ Cℓ2,0

≃ Cℓ0,n+2 ⊗ Cℓ2,0

≃ Cℓn+4,0

(55)
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as desired. □

4.3. From the theorem we see that to describe explicitly Cℓn for any n it suffices
to know Cℓ0 = k, Cℓ1 = C, Cℓ2 = H, Cℓ3 and Cℓ4. We already computed Cℓ4 = H(2)
in the proof of the theorem. Finally Cℓ3 = Cℓ0,1 ⊗ Cℓ2,0 = H ⊕ H.
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