
SPIN GEOMETRY

PROBLEM SHEET 1

Problem 1. Filtered algebras. Let 0 = F−1A ⊂ F0A ⊂ · · · ⊂ F∞ A = A be an increas-
ingly filtered associative algebra.

(1) Show that the algebra

gr A def
= ⊕k≥0Fk A/Fk−1A

is a commutative if and only if ab − ba ∈ Fp+q−1A for all a ∈ Fp A, b ∈ Fq A.
(2) Suppose that gr A is commutative. For a ∈ Fp A, let a = a mod Fp−1A be its

image in gr A. Show that the bilinear operation

{−,−} : gr A × gr A → gr A

defined by

{a, b} def
= (ab − ba) mod Fp+q−2A

is a Poisson bracket on gr A. (You should first check that {−,−} is well-
defined.)

(3) State and prove a “super” version of the above result.
(4) In class, we defined an increasing filtration on A = Cℓ(V, q)–the Clifford alge-

bra associated to the quadratic vector space (V, q). With respect to this filtra-
tion, gr Cℓ(V, q) = ∧•V. Describe the induced Poisson bracket {−,−} in this
example.

Problem 2. Classification of complex Clifford algebras. Let Cℓ(n) be the Clifford algebra,
defined over C, associated to the vector space Cn equipped with its standard non-
degenerate (holomorphic) quadratic form q(z) = ∑i z2

i .

(1) Compute dimC Cℓ(n).
(2) Show that Cℓ(1) ∼= C ⊕ C, as algebras.
(3) Consider the Pauli sigma matrices σi which satisfy σiσj = δij1 + iϵijkσk. Show

that i1, iσ1, iσ2, iσ3 form a basis for Cℓ(2), and hence Cℓ(2) ∼= EndC(C2).
(4) Show that

Cℓ(n + 2) ∼= Cℓ(n)⊗C EndC(C2).

(5) Let Cℓr,s be the real Clifford algebra associated to the standard quadratic form
on Rr+s of signature (r, s). Show that there is an isomorphism

Cℓr,s ⊗R C ∼= Cℓ(r + s).
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Problem 3. Changing base.

(1) Consider the algebra A = C ⊗R C. Find an element T ∈ A such that T2 =

1 ⊗ 1. By considering P± : A → A, the projections onto the ±1 eigenspaces for
the operator T · (−) : A → A, show that C ⊗R C ∼= C ⊕ C as real associative
algebras.

(2) Show that the bilinear map

ϕ : C × H → EndC(H)

defined by ϕ(z, y)x = zxy determines an isomorphism

C ⊗R H ∼= EndC(C2)

of real associative algebras.
(3) Show that the bilinear map

ϕ : H × H → EndR(H)

defined by ϕ(y1, y2)x = y1xy2 determines an isomorphism

H ⊗R H ∼= EndR(R4)

of real associative algebras.
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Problem 4. Pin and spin.

(1) A spinor representation is the restriction of an irreducible Cℓ(V)0-representation
to the group Spin(V). Show that, as a Spin(V)-representation, a spinor repre-
sentation is irreducible.

(2) Regard Sp(1) as the group of unit quaternions {y ∈ H | ∥y∥ = 1}, which is
diffeomorphic to S3. Describe the isomorphism

Spin(3) ∼= Sp(1)

by constructing an action of Sp(1) on Im H.
(3) Similarly, describe the isomorphism

Spin(4) ∼= Sp(1)× Sp(1)

by constructing an action of Sp(1)× Sp(1) on H.

The next two parts of the problem set up the exceptional isomorphism

Spin(6) ∼= SU(4).

(4) Let V be a four-dimensional complex vector space equipped with an inner
product and an element ν ∈ ∧4V such that ∥ν∥ = 1. Show that V is equipped
with a conjugate-linear isomorphism

⋆ν : ∧2 V → ∧2V

such that ⋆2
ν = 1 and that dimR ∧2

±V = 6. Here, ∧2
±V ⊂ ∧2V are the ±1

eigenspaces of ⋆ν.
(5) Show that the group SU(V) naturally acts on ∧2

±V. By taking V = C4, argue
that this leads to the isomorphism Spin(6) ∼= SU(4).

The next two parts of the problem set up the exceptional isomorphism

Spin(5) ∼= Sp(2).

(6) Suppose now that the four-dimensional complex vector space V is equipped
with a compatible complex symplectic structure ω ∈ ∧2V. Argue that one, or
both, of the six-dimensional real Sp(V)-representations ∧2

+V,∧2
−V contains a

five-dimensional subspace invariant under the action of Sp(V).
(7) By considering V = C4, and using Spin(6) ∼= SU(4), complete the proof that

Spin(5) ∼= Sp(2).
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