SPIN GEOMETRY PROBLEM SHEET 1

Problem 1. *Filtered algebras.* Let $0 = F^{-1}A \subset F^0A \subset \cdots \subset F^{\infty}A = A$ be an increasingly filtered associative algebra.

(1) Show that the algebra

$$\operatorname{gr} A \stackrel{\mathrm{def}}{=} \oplus_{k \ge 0} F^k A / F^{k-1} A$$

is a commutative if and only if $ab - ba \in F^{p+q-1}A$ for all $a \in F^pA$, $b \in F^qA$.

(2) Suppose that gr *A* is commutative. For $a \in F^pA$, let $\overline{a} = a \mod F^{p-1}A$ be its image in gr *A*. Show that the bilinear operation

$$\{-,-\}$$
: gr $A \times$ gr $A \rightarrow$ gr A

defined by

$$\{\overline{a},\overline{b}\} \stackrel{\text{def}}{=} (ab - ba) \mod F^{p+q-2}A$$

is a Poisson bracket on gr *A*. (You should first check that $\{-, -\}$ is well-defined.)

- (3) State and prove a "super" version of the above result.
- (4) In class, we defined an increasing filtration on A = Cℓ(V, q)-the Clifford algebra associated to the quadratic vector space (V, q). With respect to this filtration, gr Cℓ(V, q) = ∧•V. Describe the induced Poisson bracket {-, -} in this example.

Problem 2. *Classification of complex Clifford algebras.* Let $C\ell(n)$ be the Clifford algebra, defined over **C**, associated to the vector space C^n equipped with its standard non-degenerate (holomorphic) quadratic form $q(z) = \sum_i z_i^2$.

- (1) Compute dim_C $C\ell(n)$.
- (2) Show that $\mathbf{C}\ell(1) \cong \mathbf{C} \oplus \mathbf{C}$, as algebras.
- (3) Consider the Pauli sigma matrices σ_i which satisfy $\sigma_i \sigma_j = \delta_{ij} \mathbb{1} + i\epsilon_{ijk}\sigma_k$. Show that i $\mathbb{1}$, $i\sigma_1$, $i\sigma_2$, $i\sigma_3$ form a basis for $\mathbb{C}\ell(2)$, and hence $\mathbb{C}\ell(2) \cong \operatorname{End}_{\mathbb{C}}(\mathbb{C}^2)$.
- (4) Show that

$$\mathbf{C}\ell(n+2) \cong \mathbf{C}\ell(n) \otimes_{\mathbf{C}} \operatorname{End}_{\mathbf{C}}(\mathbf{C}^2).$$

(5) Let $C\ell_{r,s}$ be the real Clifford algebra associated to the standard quadratic form on \mathbf{R}^{r+s} of signature (r, s). Show that there is an isomorphism

$$C\ell_{r,s}\otimes_{\mathbf{R}}\mathbf{C}\cong_{\mathbf{1}}\mathbf{C}\ell(r+s).$$

Problem 3. Changing base.

- (1) Consider the algebra $A = \mathbf{C} \otimes_{\mathbf{R}} \mathbf{C}$. Find an element $T \in A$ such that $T^2 = 1 \otimes 1$. By considering $P_{\pm} \colon A \to A$, the projections onto the ± 1 eigenspaces for the operator $T \cdot (-) \colon A \to A$, show that $\mathbf{C} \otimes_{\mathbf{R}} \mathbf{C} \cong \mathbf{C} \oplus \mathbf{C}$ as real associative algebras.
- (2) Show that the bilinear map

$$\phi \colon \mathbf{C} \times \mathbf{H} \to \mathrm{End}_{\mathbf{C}}(\mathbf{H})$$

defined by $\phi(z, y)x = zx\overline{y}$ determines an isomorphism

$$\mathbf{C}\otimes_{\mathbf{R}}\mathbf{H}\cong \mathrm{End}_{\mathbf{C}}(\mathbf{C}^2)$$

of real associative algebras.

(3) Show that the bilinear map

$$\phi \colon \mathbf{H} \times \mathbf{H} \to \mathrm{End}_{\mathbf{R}}(\mathbf{H})$$

defined by $\phi(y_1, y_2)x = y_1 x \overline{y}_2$ determines an isomorphism

 $H \otimes_R H \cong \text{End}_R(R^4)$

of real associative algebras.

Problem 4. Pin and spin.

- (1) A *spinor representation* is the restriction of an irreducible $C\ell(V)_0$ -representation to the group Spin(V). Show that, as a Spin(V)-representation, a spinor representation is irreducible.
- (2) Regard Sp(1) as the group of unit quaternions $\{y \in \mathbf{H} \mid ||y|| = 1\}$, which is diffeomorphic to S^3 . Describe the isomorphism

 $Spin(3) \cong Sp(1)$

by constructing an action of Sp(1) on Im **H**.

(3) Similarly, describe the isomorphism

$$Spin(4) \cong Sp(1) \times Sp(1)$$

by constructing an action of $Sp(1) \times Sp(1)$ on **H**.

The next two parts of the problem set up the exceptional isomorphism

$$Spin(6) \cong SU(4).$$

(4) Let *V* be a four-dimensional complex vector space equipped with an inner product and an element $\nu \in \wedge^4 V$ such that $\|\nu\| = 1$. Show that *V* is equipped with a conjugate-linear isomorphism

$$\star_{\nu} \colon \wedge^2 V \to \wedge^2 V$$

such that $\star^2_{\nu} = 1$ and that $\dim_{\mathbf{R}} \wedge^2_{\pm} V = 6$. Here, $\wedge^2_{\pm} V \subset \wedge^2 V$ are the ± 1 eigenspaces of \star_{ν} .

(5) Show that the group SU(V) naturally acts on $\wedge^2_{\pm}V$. By taking $V = \mathbb{C}^4$, argue that this leads to the isomorphism $Spin(6) \cong SU(4)$.

The next two parts of the problem set up the exceptional isomorphism

$$Spin(5) \cong Sp(2).$$

- (6) Suppose now that the four-dimensional complex vector space V is equipped with a compatible complex symplectic structure ω ∈ ∧²V. Argue that one, or both, of the six-dimensional real Sp(V)-representations ∧²₊V, ∧²₋V contains a *five-dimensional* subspace invariant under the action of Sp(V).
- (7) By considering V = C⁴, and using Spin(6) ≅ SU(4), complete the proof that Spin(5) ≅ Sp(2).