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Last time we introduced the concept of net area. Let’s recall the precise definition.

Definition 2.67. Let f be a continuous function and consider the region which is
bounded by the x-axis and the curve of the graph y = f (x) between x = a and
x = b. The net area is the area of the region above the x-axis minus the area below
the x-axis.

Example 2.68. Consider the function f (x) = 2x� 2. What is the net area determined
by y = f (x) between x = 0 and x = 2? What about the net area between x = 0
and x = 3? (Use geometry to obtain the exact answer, do not use a Riemann sum
approximation.)

Definition 2.69. Consider a function f defined on an interval [a, b] The definite in-

tegral (if it exists)
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a

f (x)dx

is the net area determined by y = f (x) between x = a and x = b.

Remark 2.70. This is actually more of a theorem than a definition, but the definition
of the definite integral is a little more involved than what we will be focusing on in
this class. We’ll give a more precise definition in terms of Riemann sums at the end
of this lecture.

The existence is guaranteed in two situations.

• the function f is continuous on the interval [a, b], or
• the function f is bounded with only finitely many discontinuities.

Example 2.71. Consider the function f (x) =
p

9 � x2. Use geometry to compute
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9 � x2 dx.
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Example 2.72. Using geometry evaluate
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p
8 + 2x � x2 dx.

Example 2.73. This example is about definite integrals of even and odd functions.

• Suppose that f (x) is an even function and
� 2

0 f (x)dx = 7. Evaluate
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f (x)dx.

• Suppose that g(x) is an odd function. Evaluate
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g(x)dx.

In general, what can you infer about integrals of even/odd functions around inter-
vals that are symmetric about the y-axis?
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Let’s turn to a precise definition of the definite integral which uses Riemann
sums. Recall that the Riemann sum approximating the net area of a function f

between x = a and x = b can be written as
(159) f (x

⇤
1) · Dx + f (x

⇤
2)Dx + · · ·+ f (x

⇤
n)Dx

where

• n is the number of rectangles/subintervals.
• Dx = (b � a)/n.
• x

⇤
k

is either the left/midpoint/right point of the kth subinterval depending
on the type of Riemann sum we use.

We can write this in a compact form using “sigma-notation”
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Â
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f (x
⇤
k
)Dx.

More generally sigma-notation is simply shorthand for expressing a sum of num-
bers

(161)
n

Â
k=1

g(k) = g(1) + g(2) + · · ·+ g(n � 1) + g(n).

There are n terms on the right hand side.

Example 2.74. Evaluate the sum Â3
k=1 k

2.

More generally, there is a formula for this sum
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k
2 =

n(n + 1)(2n + 1)
6

.

(If you like you can check this for small values of n.)

We can now make this idea precise that Riemann sums approximate areas.

Definition 2.75. The definite integral of f from x = a to x = b (if it exists) is the
limit of a Riemann sum approximation as the number of subintervals n approaches
•. That is
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f (x
⇤
k
)Dx.

60



Example 2.76. Let’s evaluate
� 2

1 x
2dx using the definition.

We will use the left Riemann sum approximation. For instance, when n = 4 we
have Dx = 1/4 and the left Riemann sum is
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For general n we have the Riemann sum approximation
n

Â
k=1

✓
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k

n

◆2 1
n
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= 1 +
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n
+

n(n + 1)(2n + 1)
6n3 .

Taking n ! • we obtain

(165) 1 + 1 +
1
3
=

7
3

.
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