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LECTURE 1

Introduction to the class

Popularized and pioneered by Grothendieck, Hilbert schemes are among the
most fundamental moduli spaces in algebraic geometry. Given an algebraic vari-
ety one can study the space which parameterizes all possible subschemes of the
fixed variety; this space is called a Hilbert scheme. Throughout this course we will
study the Hilbert scheme of dimension zero subvarieties (points) of smooth alge-
braic surfaces. There is a nice balance of richness and accessibility in the context of
Hilbert schemes of points in algebraic surfaces. On one hand, the Hilbert scheme of
points of algebraic curves agrees with the symmetric product of the curve; so this
is a rather trivial case of Hilbert schemes. On the other hand, for smooth algebraic
varieties of dimension at least three, the Hilbert scheme of points is generally sin-
gular. It is in the case of dimension zero subschemes of a smooth algebraic variety
where the Hilbert scheme is smooth and irreducible.

In the case that the algebraic surface is affine space A2, one think about Hilbert
schemes as a particular moduli space of rank one torsion-free sheaves on the pro-
jective variety P2. More generally one can consider moduli spaces of torsion-free
sheaves of higher rank. These moduli spaces are amenable to similar tools and
techniques that one uses for Hilbert schemes.

Part of the goal of this course is to elucidate algebro-geometric properties of
Hilbert schemes of points and moduli spaces of torsion-free sheaves on smooth
algebraic surfaces. For the lecturer, however, perhaps most fascinating is the con-
nection between these moduli spaces and at least three other topics:

1. Moduli spaces of instantons on R4 and more generally singularities of ALE
type.

2. Representation theory of infinite-dimensional Lie algebras such as affine
Kac–Moody algebras.

3. String theory and M theory. Specifically the infamous theory X which one
can think about as a twist of the worldvolume theory of fivebranes in M
theory.

We will mostly be following the books [Nak99; Kir16].

1.1. QUIVER REPRESENTATIONS AND INSTANTONS

Solutions to the anti-self-dual Yang–Mills equations on a four-dimensional man-
ifold M are called instantons. Amazingly, by work of Atiyah, Drinfeld, Hitchin,
and Manin (ADHM) for M = R4 gauge equivalent classes of such connections can
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6 1. INTRODUCTION TO THE CLASS

be described in terms of solutions of some quadratic equations for certain finite-
dimensional matrices [Ati+78]. This relies on a presentation of R4 = C2 as a hyper
Kähler space. Let us briefly sketch this approach for U(N) instantons of ‘charge k’.
Here, charge is given by

∫
S4 FA ∧ FA normalized so that it is an integer.

Fix the following data:

• a pair of complex vector spaces V, W of dimensions k, N, respectively.
• a pair of complex endomorphisms X, Y : V → V.
• a pair of linear maps i : W → V and j : V →W.

These are required to satisfy the ADHM equation

(1) XY−YX + ij = 0,

together with a non-degeneracy (or stability) condition. From this data one con-
structs an instanton on R4 which has rank N and topological charge k. This data
can be extracted from the so-called “ADHM quiver”, see figure ??. More precisely,
this data determines a representation of the ADHM quiver—roughly, the vector
spaces V, W label the nodes (there is a framed and an unframed node) and the
morphisms are labeled by the edges. The word ‘quiver’ simply refers to a directed
graph. The maneuver of associating to a quiver the above linear data will be ex-
plained in this course.

To connect to the Hilbert scheme on A2 one should look at rank one instantons
on R4. Strictly speaking, there are no instantons, but a slight variant of the above
construction in terms of the ADHM quiver returns the Hilbert scheme. Roughly
speaking, the moduli space of ‘non-commutative’ rank one instantons of charge k
can be identified with the Hilbert scheme of k points on A2.

On a more general class of non-compact four-manifolds which are asymptoti-
cally locally Euclidean (ALE) there is a description of instantons in terms of more
general quadratic equations also defined on some space of finite-dimensional ma-
trices [KN90; Nak94]. The corresponding moduli spaces can be described in terms
of a more general class of quivers whose underlying graphs are the Dynkin graphs
of type ADE. This is not an accident: there is a classification due to Kronheimer
of four-dimensional ALE spaces: they resolutions of singularities of the form C2/Γ
where Γ ⊂ SU(2) is a finite subgroup. Finite subgroups of SU(2) fall under the
same ADE classification as finite simple Lie groups. For this reason, sometimes
C2/Γ is referred to as a ADE singularity. The relationship between these related
classifications follows from the fact that both structures are governed by the com-
binatorics of the simply laced Dynkin diagrams.

Even if we forget the gauge theoretic origin, associated to any quiver is a mod-
uli space of representations called the Nakajima quiver variety. These will be the
main geometric objects we are concerned with in this course. In many cases, there
are independent, algebro-geometric descriptions of these moduli spaces in terms of
sheaves on complex varieties of dimension two. For example, in the ADHM case,
it corresponds to the moduli space of torsion-free sheaves on P2 which are of rank
N, framed at ∞ ∈ P2, and have second Chern class equal to k.
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1.2. INFINITE-DIMENSIONAL LIE ALGEBRAS

Cohomology is one of the fundamental invariants of a space. In this course
we will give a description of the cohomology of the Hilbert scheme and of more
general quiver varieties. For the Hilbert scheme we will work out a beautiful for-
mula for the generating function of the Poincaré polynomial derived originally by
Göttsche [Göt90]. This generating function is of the form

(2) ∑
n≥0

qnPHilbn(X)(t).

Here PY(t) = ∑n tn · (dim Hn(Y)) is the Poincaré polynomial of a space Y.

Amazingly, this generating function matches with an expression for the charac-
ter of a representations for a certain infinite-dimensional algebra called the Heisen-
berg algebra. The Heisenberg algebra heis is a central extension of the abelian Lie
algebra of Laurent polynomials in a single variable

(3) C→ heis→ C((z)).

It has irreducible representations labeled by a ‘level’ and a highest weight. One
of the main results of Nakajima [Nak97] and Grojnowski [Gro96] is that for X an
algebraic surface the direct sum of the homologies of Hilbert schemes

(4) ⊕n≥0 H• (Hilbn(X))

is a representation for heis. Moreover, the action of the Heisenberg algebra can
be constructed in a completely geometric way and each H•(Hilbn(X)) is a weight
space. Furthermore, one can actually argue that a richer structure is present on the
direct sum above.

A vertex algebra is a structure present in two-dimensional conformal field theory
(CFT). It is the algebraic structure carried by the so-called ‘local operators’ of a
holomorphic two-dimensional CFT. The direct sum above turns out to be a vertex
algebra in a totally geometric way.

For the case of higher ranks or more general quivers there is a similar picture.
Here, the Heisenberg algebra is replaced by a Lie algebras of affine Kac–Moody
type [Kac90].

1.3. CONNECTION TO STRING THEORY

A natural question to ask is for an ‘explanation’ for the relationship between
CFT and the Hilbert scheme or instanton moduli spaces. One potential answer
can be found in string theory. The Hilbert scheme of points and its higher rank
generalizations take part in a rich collection of dualities in string theory such as the
correspondence of Alday, Gaiotto, and Tachikawa [AGT10].

There is an infamous six-dimensional supersymmetric quantum field theory
which can be defined for any Lie algebra of type ADE, just as in the classification
of ALE spaces. From the point of view of string theory, one can think about the
theory as obtained from ‘compactifying’ string theory on an ALE space. Though,
no rigorous description of this theory exists, physicists are still able to glean useful
information from this setup.
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A setup relevant to the above discussion is to consider the six-dimensional the-
ory on a product of manifolds of the form

(5) Σ× X

where Σ is a Riemann surface and X is a complex two-dimensional surface. The
‘compactification’ in the X direction yields a two-dimensional CFT whose states
bear a close relationship to the cohomology of moduli spaces we will be consider-
ing. The remaining Σ-direction exhibits the rich structure of a CFT that we alluded
to above.



LECTURE 2

The Hilbert scheme of points on a surface

In this lecture we introduce symmetric products of algebraic varieties, give a
scheme-theoretic definition of the Hilbert scheme of points, and introduce an ex-
plicit description using geometric invariant theory. The justification of this descrip-
tion is where we will go in the next few lectures. Much of what we do in this course
works over an arbitrary algebraically closed field. For the most part we will restrict
ourselves to working over C.

2.1. SYMMETRIC PRODUCTS AND HILBERT SCHEMES

Let’s begin with a simple example. Given any topological space X we can con-
sider the n-fold symmetric product

(6) SnX = X×n/Sn

where the symmetric group Sn acts on the cartesian product X×n in the natural way.
Notice that if X is a smooth manifold it is no longer the case that SnX is a smooth
manifold. The problem is that there are singular points (so-called ‘orbifold’ points.)
In a sense, the Hilbert scheme of points on X is a ‘resolution’ of these singularities.

There is the following algebraic interpretation of the symmetric product. For
example, suppose that X is just (complex) algebraic affine space A1 = Spec(C[x]).
Then, we have the following presentation

(7) SnA1 = Spec
(

C[x1, x2, . . . , xn]
Sn
)

where Sn permutes the variables xi in the defining way. By classical invariant the-
ory one knows that

(8) C[x1, . . . , xn]
Sn ' C[s1, . . . , sn]

where sn are the elementary symmetric polynomials in n-variables. Thus SnA1 '
An as algebraic varieties.

More generally, we have the following definition of the symmetric power of an
arbitrary affine algebraic variety X as

(9) SnX def
= Spec

((
C[X]⊗n)Sn

)
.

That is, the spectrum of the Sn invariants of the ring C[X]⊗n, where C[X] is the ring
of regular functions on X.

In higher dimensions, the symmetric powers of a smooth variety can be sin-
gular. Take for example the affine algebraic variety X = A2 = Spec C[z1, z2]. By

9



10 2. THE HILBERT SCHEME OF POINTS ON A SURFACE

definition, the symmetric square S2A2 is the spectrum of the following ring

(10) A = C[z1, z2, w1, w2]
Z/2

where Z/2 acts by zi ↔ wi for i = 1, 2.

Proposition 2.1.1. There is an isomorphism of rings

(11) A ' C[x, y, u, v, w]/(uv− w2).

In particular

(12) S2A2 ' A2 ×Q

where Q is the (singular) quadric in C3 defined by uv = w2.

PROOF. Make the following change of variables x = z1 + w1, y = z2 + w2, s =
z1−w1, t = z2−w2. Then, the Z/2 action on these new variables leaves x, y invari-
ant so that

(13) A ' C[x, y]⊗ B

where B = C[s, t]Z/2 and the new Z/2 action is s → −s, t → −t. If we further
reparameterize u = s2, v = t2, w = st we see that

(14) B ' C[u, v, w]/(uv− w2).

�

We want to do better than the symmetric product. Let X = Spec(A) be an affine
algebraic variety. The Hilbert scheme of n-points in X has underlying set defined
by

(15) Hilbn(X)
def
= {J ⊂ A | J ideal, dim(A/J) = n}.

When dim X = 1 it is easy to see that Hilbn(X) = SnX. But more generally, the
Hilbert schemes differ from the symmetric powers. There is, however, a natural
map

(16) πHC : Hilbn(X)→ SnX

called the Hilbert–Chow morphism. On sets, it sends an ideal J ⊂ A to the support
supp(A/J).

Remark 2.1.2. Here, if M is an A-module then its support supp(M) ⊂ X = Spec(A)
can be thought of as an unordered set of points in X.

Remark 2.1.3. If dim X = 2, and X is nonsingular, then the Hilbert–Chow mor-
phism is a resolution of singularities.

This is the definition of the Hilbert scheme as a set. Below we will see how one
endows it with the structure of a scheme.

Here is another useful presentation of the Hilbert scheme as a set.

Lemma 2.1.4. Let X = Spec(A) be an affine variety. There is a bijection of Hilbn(X)
with the set of pairs

(17) (M, v)

where M is an A-module of dimension n and v ∈ M is a vector which satisfies A · v = M
(such a vector is called a cyclic vector).
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PROOF. In one direction the correspondence takes an ideal J and sends it to
M = C[X]/J with v = 1. �

2.2. REPRESENTABILITY

In the next section we will define the Hilbert scheme using the functor of points
perspective. The main objects are functors of the form

(18) F : (Sch/S)
op → Sets

where Sch/S is the category of schemes over a fixed scheme S and the op denotes
the opposite category.

An important example of a contravariant functor is the following. Suppose that
X is any scheme. Then consider the “Yoneda” functor

(19) hX/S : (Sch/S)
op → Sets

defined by

(20) hX/S(U) = HomSch/S(U, X).

When we write U on the left hand side we implicitly remember it is a scheme over
S, that is, it comes with a morphism U → S.

Given a functor F : (Sch/S)
op → Sets we want to know whether it is repre-

sentable. This means that there is an equivalence of functors hX ' F for some
scheme X. In this case, we then say that X represents F. Let’s unpack what such an
equivalence would mean.

First off, an equivalence of functors means we have a natural transformation
η : hX → F. There is a canonical element in hX(X) given by the identity 1Y. Via the
transformation η we obtain an element

(21) ξ
def
= η(1X) ∈ F(X).

Conversely, given an element ξ ∈ F(X) we can construct a natural transformation
ηξ : hX → F as follows. For any f : Y → X in hX(Y) let ηξ( f ) = f ∗ξ. (Here f ∗ξ
stands for the image of ξ under the map F( f ) : F(Y) → F(X).) One can see that
these two operations are inverses to one another which gives the “Yoneda lemma”

(22) Fun(hX, F) ' F(X).

Thus we can rephrase representability as follows.

Definition 2.2.1. Let F be a functor as above. A pair (X, ξ) where X is a scheme
over S and ξ ∈ F(X) represents F if the induced natural transformation ηξ : hX/S →
F is an equivalence. Equivalently, for any T → S there is a natural one-to-one
correspondence between lifts

(23)
X

T S.

φ

and elements φ∗ξ ∈ F(T).
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The element ξ is usually called the universal family corresponding to F.

Example 2.2.2 (Point functor for projective space). Let S = Spec C for concreteness.
Which functor represents projective space Pn? Recall that Pn is the space of lines
in Cn+1. Thus, for a scheme X we can think about a map

(24) φ : X → Pn

as giving a family of lines in Cn+1 parametrized by X. Conversely, given a family
of lines in Cn+1 parametrized by X we should be able to construct such a map.

The important question is what does ‘family’ of lines mean in this context? A
first attempt would be to define a family of lines in Cn+1 parametrized by X as a
sub vector bundle of the trivial rank n + 1 bundle O⊕n+1

X . The problem with this
is that sub bundles are not so well-behaved sheaf-theoretically. Indeed, if F is a
locally free sheaf with corresponding bundle F and E ⊂ F is a locally free subsheaf
with corresponding bundle E, then the map on stalks Ex → Fx may not be injective.
Better, then, is to look at locally free subsheaves.

For a fixed scheme X let F(X) be the set of exact sequences

(25) 0→ K→ O⊕n+1
X → L→ 0

up to equivalence where L (or K) is rank one. We can upgrade X 7→ F(X) to
a functor as above; indeed, pulling back sheaves along X → Y results in a map
F(Y)→ F(X).

The functor F is represented by the projective space in the sense that there is a
natural bijective correspodence between maps φ : X → Pn and elements of F(X).

2.3. HILBERT SCHEMES: FORMAL DEFINITION

So far we have only provided the careful definition of the Hilbert scheme for
affine varieties. Even in this case we didn’t give an argument as to why it has the
structure of a scheme. The goal of this section is to remedy these two shortcom-
ings using the functor of points perspective. We will state, but not prove, a very
important result that the Hilbert scheme functor is representatable in an extremely
general situation. Later on, for Hilbert schemes on A2 we will come up with an
explicit presentation.

First a definition.

Definition 2.3.1. Let X be a scheme over S. An algebraic family of closed sub-
schemes of X/S parameterized by a scheme T is a closed subscheme

(26) Z ⊂ XT
def
= X×S T.

The family is flat if the induced morphism Z → XT → T is flat.

For the most part we will take S = Spec C. Fix a projective scheme X over
Spec C and let Sch/C be the category of all schemes over Spec C. Define the functor

(27) H ilbX : (Sch/C)
op → Sets

by sending a scheme T to the set of flat algebraic families of closed subschemes
parametrized by T. If f : T → T′ is a map of schemes then any T′-family Z ⊂ X×T′
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restricts along f to a T-family f ∗Z ⊂ X × T′. Thus, H ilbX is a contraviant functor
from the category of schemes over C to sets.

Now, we will define a subfunctor of H ilbX with some nice properties. Let
H ilbX,n be the subfunctor which assigns to a scheme T the set of families with
Hilbert polynomial P.

Aside 2.3.2 (Hilbert polynomial). The Euler characteristic of a sheaf F on X is

(28) χ(X,F) def
= ∑

i
(−1)i dim Hi(X,F).

Let j : X ↪→ PN be a projective scheme. For m ≥ 0 let OX(m) = j−1OPN (m) and
F(m) = F⊗OX OX(m). The Hilbert polynomial of F is defined by

(29) PF(m)
def
= χ(X,F(m)).

The fact that this is actually a polynomial requires a bit of work.

If Z ⊂ X× T is a closed family of subschemes parametrized by T then we let

(30) Pt(m)
def
= POZt

(m).

By flatness, when T is connected this polynomial is independent of t ∈ T. In this
case we simply denoted by P.

THEOREM 2.3.3 ([Gro95]). Let X be a projective scheme. Then, the functor H ilbX,P is
representable by a projective scheme that we denote by HilbP(X). In particular, this means
that there is a universal family ZX,P → HilbP(X) such that every family on a scheme U is
determined by restricting this family via a unique morphism U → HilbP(X).

Remark 2.3.4. This theorem implies that the full Hilbert scheme H ilbX (with no
condition on the Hilbert polynomial) is represented by the scheme

(31)
⊔
P

HilbP(X).

This result allows us to define the Hilbert scheme for any quasi-projective scheme.
Indeed, if Y ⊂ X is an open subscheme of a projective scheme then we have the
corresponding open subscheme HilbP(Y) ⊂ HilbP(X).

Definition 2.3.5. Let P be the constant polynomial P = n. Then, we denote HilbP(X) =
Hilbn(X) and call it the Hilbert scheme of n points on X.

It is worthwhile to see that in the case that X is an affine algebraic variety that
this definition agrees with (15). For the most part, we will restrict ourselves to
Hilbert schemes of points on schemes of dimension two. We will give an explicit
descriptions of the Hilbert scheme Hilbn(A2). Via a gluing argument, one can de-
fine the Hilbert scheme associated to any nonsingular complex surface in the com-
plex analytic category [Dou66]. In particular, for X a complex analytic surface the
space Hilbn(X) is defined and has the structure of a complex manifold.



14 2. THE HILBERT SCHEME OF POINTS ON A SURFACE

2.4. AN EXPLICIT DESCRIPTION

Suppose that X = Spec(A) is an affine algebraic variety and that G is a linear
algebraic group acting algebraically on X (all defined over C). We will also assume
that G is reductive meaning that its radical is a torus. It is in this case that the Lie
algebra g = Lie(G) is a direct sum of semisimple and commutative Lie algebras.

Definition 2.4.1. The geometric invariant theory (GIT) quotient of X = Spec A by
an algebraic G-action is the affine algebraic variety

(32) X // G def
= Spec

(
AG
)

.

Remark 2.4.2. It is a theorem of Hilbert that the algebra C[X]G is finitely generated.
Therefore the set of maximal ideals indeed defines an affine algebraic variety.

We will study GIT quotients in more detail during the next lecture. For the time
being, we will introduce an explicit GIT description of the Hilbert scheme.

Fix an integer n and consider the following (non-linear) subspace

(33) Hn ⊂ Hom(Cn, Cn)⊕2 ⊕ Cn ⊕ (Cn)∗

as the set of tuples (X, Y, i, j) which satisfy

(34) [X, Y]− ij = 0.

Also let

(35) Hs
n ⊂ Hn

be the subspace where i generates Cn under the action by X, Y. There is a natural
action of GL(n, C) on Hn and Hs

n.

The proof of the following result will occupy the next few lectures.

THEOREM 2.4.3. There are isomorphisms of algebraic varieties

SnA2 ' Hn // GL(n, C)

Hilbn(A2) ' Hs
n // GL(n, C).

Moreover, the natural map Hs
n ↪→ Hn induces the Hilbert–Chow morphism

(36) πHC : Hilbn(A2)→ SnA2.

Remark 2.4.4. Actually, one can obtain a slightly more minimal description of
Hilbn(A2). The condition that i generates Cn under the action of X, Y together
with (62) can be shown to imply that j = 0. Thus Hilbn(X) can be realized as
the GL(n; C) quotient of the set of triples (X, Y, i) such that [X, Y] = 0 and that i
generates Cn under the action by X, Y.



LECTURE 3

Geometric invariant theory, I

Studying objects up to a notion of equivalence is an integral concept in any
area of mathematics. The appearance of quotients is thus inevitable. In this lecture
we begin studying quotients which are particularly well-behaved in the algebro-
geometric setting.

3.1. QUOTIENTS IN GEOMETRY AND TOPOLOGY

We will review some classic results about group actions on topological spaces
and smooth manifolds.

If G is a group acting on a topological space M then we can consider the set-
theoretic quotient M/G which is, by definition, the set of G-orbits. This set is
equipped with a natural topology for which the map M → M/G is continuous.
But, in general, this topological space may not even be Hausdorff. To get a nicer
behaved quotient we look at a more refined situation.

Suppose that G is a real Lie group acting on a smooth manifold M. We call this
action proper if the map

G×M→ M×M

(g, m) 7→ (m, g ·m)

is proper; meaning the preimage of any compact set is compact. Equivalently, this
is the condition that for any compact sets K, K′ ⊂ M that the subset {g ∈ G | gK ∩
K′} ⊂ G is compact.

Denote the stabilizer of a point x ∈ M by

(37) Gx
def
= {g ∈ G | g · x = x} ⊂ G.

Also, denote the orbit of a point x ∈ M by

(38) Ox
def
= {y ∈ M | y = g · x} ⊂ M.

We have the following easy observations:

• if G is compact then properness is guaranteed.
• any G-orbit of a proper action is a closed subset of M.

A fundamental result pertaining to quotients spaces in geometry and topology
is the following so-called “slice theorem”.

THEOREM 3.1.1. Suppose G acts properly on a smooth manifold M. For every x ∈ M
there exists a locally closed submanifold Sx ⊂ M (called a slice) containing x which is

15



16 3. GEOMETRIC INVARIANT THEORY, I

invariant under the action of Gx. Furthermore, there exists an open neighborhood U ⊃ Ox
such that the natural map

(39) G×Gx S '−→ U

is a homeomorphism.

In particular, Ox is a smooth closed submanifold of M.

One can think about a slice as a closed submanifold which is transverse to the
G-action. In other words, acting on S by the entire group G sweeps out the entire
manifold. A local slice just sweeps out an open neighborhood of an orbit.

Example 3.1.2. Consider the action of SO(2) = U(1) on R2 by rotations. The stabi-
lizer at x 6= 0 is trivial. A slice through x is the line through x and the origin.

As a corollary one obtains the following.

THEOREM 3.1.3. Suppose that G acts freely and properly on a smooth manifold M.
Then the set of orbits M/G has the structure of smooth manifold with the property that the
quotient map

(40) M→ M/G

is a smooth principal G-bundle.

So far these theorems take place in the smooth or topological setting. We now
move towards quotients in algebraic geometry.

3.2. ALGEBRAIC GROUPS

One has the following hierarchy

(41) {groups} ⊃ {topological groups} ⊃ {real Lie groups}
⊃ {complex Lie groups} ⊃ {algebraic groups}

and for actions G× X → X we have

(42) {action} ⊃ {continuous action} ⊃ {smooth action}
⊃ {holomorphic action} ⊃ {algebraic action}.

An important structure in any of these contexts is reducibility. Suppose that
we are in a linear situation. A representation (or a linear action) of a group G
on a vector space V is called completely reducible if it is a direct sum of irreducible
representations.

If G is a compact topological group acting linearly on a (real or complex) vec-
tor space V then the action is completely reducible. Thus, compactness is enough
to guarantee complete irreducibility. But, sometimes we do not want to assume
compactness.

Definition 3.2.1. A complex Lie group G is said to be reductive if

• G has finitely many connected components.
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• G contains a compact real Lie subgroup K such that C⊗R TeK ' TeG.

The compact group K is called the reductive form of G.

Example 3.2.2. A basic example of a reductive group is the group GL(n, C) of in-
vertible complex-valued n× n matrices. In this case the real subgroup U(n) can be
taken to be the group of unitary n× n matrices.

THEOREM 3.2.3. A reductive linear group action on a complex vector space is com-
pletely reducible.

Let’s turn to the nice algebraic context that we will work in for the time being.

Definition 3.2.4. A linear algebra group G is a subgroup of GL(V), where V is
some complex vector space, which is cut out by a finite collection of polynomials.
That is, there exists p1, . . . , pk ∈ C[End(V)] such that

(43) G = {g ∈ GL(V) | pi(g) = 0, for all i}.
Example 3.2.5. The groups GL(n, C), SL(n, C), O(n, C), SO(n, C), Sp(2n, C) are all
linear algebra groups. The group U(n) is not a complex linear algebraic group,
though it is a real algebraic group.

Definition 3.2.6. An affine algebraic group G is an affine algebraic variety together
with structure maps µ : G × G → G, (−)−1 : G → G, and an element e ∈ G such
that the usual group axioms hold.

An algebraic action of an algebraic group on an affine algebraic variety X is a
map of algebraic varieties G× X → X satisfying the axioms of an action.

Proposition 3.2.7. Any affine algebraic group is isomorphic (as an affine algebraic group)
to a linear algebraic group.

We say an algebraic group G is reductive if it is reductive as a complex Lie
group (in the sense above).

Example 3.2.8. The groups GL(n, C), SL(n, C), O(n, C), SO(n, C), Sp(2n, C) are re-
ductive. An example of a non-reductive group is the additive group Ga = (C,+).
Another example of a non-reductive group is the Borel subgroup of GL(n, C) con-
sisting of upper triangular matrices with 1’s along the diagonal.

Here is the main theorem about reductive group actions.

THEOREM 3.2.9. Let G be a reductive algebraic group acting on an affine variety X.
Then

• C[X]G is a finitely generated C-algebra.
• If W, Z ⊂ X are closed, G-invariant, and disjoint then there exists a G-invariant

polynomial function p ∈ C[X] such that p|W ≡ 0 and p|Z ≡ 1.

3.3. QUOTIENTS IN AFFINE ALGEBRAIC GEOMETRY

For the next few lectures we will be working in the context where G is an al-
gebraic group acting on an affine algebraic variety X (all defined over C). We will
consider X as a topological space using the Zariski topology.
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Some key results of invariant theory which we will not prove include the fol-
lowing.

• Every G-orbit in X is a nonsingular algebraic variety (which is not neces-
sarily closed).
• For every orbit O, we can consider the closure O. The boundary O−O is

a union of lower dimensional orbits.

In the last lecture we introduced the so-called geometric invariant theory, or sim-
ply GIT, quotient

(44) X // G def
= Spec

(
C[X]G

)
.

By the first part of theorem 3.2.9 this is an affine algebraic variety. Also, there is a
relationship between the set-theoretic quotient M/G and the GIT quotient. Indeed,
given any orbit O ∈ X/G we can define the maximal ideal

(45) JO
def
= { f ∈ C[X]G | f |O = 0}.

The assignment O 7→ JO defines a continuous map

(46) p : X/G → X // G,

where X // G is equipped with the Zariski topology.

Aside 3.3.1. The Zariski topology is the natural topology on schemes. Let’s con-
sider the affine world. The closed sets in An are precisely the algebraic sets. That
is, those sets of the form

(47) {x ∈ An f (x) = 0, f ∈ S}
where S is some set of polynomials.

The Zariski topology, while natural from the point of view of algebraic geom-
etry, is rather pathological. For example, it is rarely Hausdorff. Consider A1 =
Spec(C[x]). Since all prime ideals are maximal, every point in A1 is closed in the
Zariski topology. Nevertheless, it fails to be Hausdorff.

THEOREM 3.3.2. For X affine and reductive this map is surjective. Moreover two
orbits O, O′ determine the same point in X // G if and only if the closures of the orbits are
disjoint O∩O

′ 6= ∅.

Thus, as a topological space X // G is X/ ∼ where x ∼ x′ if and only if Ox ∩Ox′ 6= ∅.

From this we obtain an explicit description of the GIT quotient.

THEOREM 3.3.3. There is a homeomorphism of topological spaces

(48) X // G ' {closed orbits in M}
which sends [x] 7→ the unique closed orbit contained in Ox.

PROOF. It suffices to show that the closure of any orbit contains a unique closed
orbit. For the existence of a closed orbit, recall that boundary of an orbit O−O

is a union of orbits of lower dimension. For uniqueness one relies on Theorem
3.2.9. �
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As a corollary of this we see that if all orbits are closed then the GIT quotient
agrees with the set-theoretic one. Here is a simple example where there is a non-
closed orbit.

Example 3.3.4. Suppose that X = A2 and consider the scaling action of G = C×

(49) λ · (z1, z2) = (λz1, λz2).

Then as a topological space one has

(50) A2/C× ' P1 ∪ {0}.
(Note that A2/C× is not a manifold.) On the other hand, the only closed orbit is
{0} ⊂ A2. Indeed, if 0 6= x ∈ A2 then Ox = `x − {0} where `x is the line through x
and 0. Thus

(51) A2 // C× ' {0}.
Notice that this is consistent with the fact C[z1, z2]C

×
= C.

In the topological world, we obtain the best structure on the quotient when
the G-action is free. It is in this case that the quotient is a smooth manifold (if we
start with a smooth manifold) and the quotient map exhibits the original space as a
principal bundle. There is an analog of this result in the algebro-geometric world.

To formulate we need to have an algebro-geometric version of a smooth prin-
cipal bundle. This is a bit outside of the scope of the topics of the course. If x ∈ X
is a point in an algebraic variety then let Ox be the completed local ring at x ∈ X.
By definition, this is the stalk of the sheaf OX at x

(52) OX,x = lim
U3x

OX(U).

In other words, this is the ring of germs of functions at x ∈ X. This is a local ring
with maximal ideal given by functions which vanish at p. We denote by OX̂,x the
completion of this local ring.

Example 3.3.5. Suppose that X = Spec (C[z1, . . . , zn]/( f )) where f is some poly-
nomial. Then O0̂ is isomorphic to C[[z1, . . . , zn]]/( f ).

For us, the analog of a principal G-bundle in algebraic geometry will be an
étale G-bundle. While we won’t give the careful definition of étale, let’s point out
a useful feature.

A G-equivariant map f : X → Y is an étale G-bundle if for every y ∈ Y there
exists an open neighborhood U ⊂ Y of y such that X|U → U is étale equivalent to
the trivial G-bundle U × G → U.

A morphism of algebraic varieties f : X → Y is called étale if for every x ∈ X
the pullback map

(53) f ∗ : O f̂ (x) → Ox̂

is an isomorphism.

THEOREM 3.3.6 (Luna Slice). Suppose that X is a non-singular affine variety equipped
with a free G-action where G is a reductive algebraic group. Then X // G = X/G is a non-
singular variety and X → X // G is an étale G-bundle.
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3.4. A FUNDAMENTAL EXAMPLE

We end this lecture with a very important example. Let

(54) X = End(Cn) = An2

be the affine space of n× n matrices. Consider the adjoint action of G = GL(n, C)
on X.

Given a matrix x ∈ X consider its characteristic polynomial

(55) det(x + t1) = pn(x) + tpn−1(x) + · · ·+ tn−1 p1(x) + tn

where t is some indeterminate.

THEOREM 3.4.1. The polynomials p1, . . . , pn ∈ C[X] are algebraically independent,
GL(n, C)-invariant, and generate C[End(Cn)]GL(n,C). In particular

(56) End(Cn) // GL(n, C) ' An.

The proof of this theorem relies on the following fundamental lemma.

Lemma 3.4.2. Suppose that an algebraic group G acts on a variety X and suppose that
p1, . . . , pn ∈ C[X] are G-invariant polynomials. Further, suppose that H ⊂ G is a sub-
group which leaves invariant a subvariety U ⊂ X with the properties:

(1) the polynomials pi|U generate the ring C[U]H;
(2) the set G ·U is dense in X.

Then the polynomials p1, . . . , pn generate the ring C[X]G.

PROOF. Let p be a polynomial which is G-invariant. Then, by assumption,

(57) p|U = F(p1|U , . . . , pn|U)
for some polynomial F. Define

(58) q def
= p− F(p1, . . . , pn) ∈ C[X].

By construction q|U ≡ 0. Moreover, q is G-invariant so that q|G·U ≡ 0. By the
second assumption we know that q ≡ 0. �

Let’s turn to the proof of theorem 3.4.1

PROOF OF THEOREM 3.4.1. Fix a basis {ei} of Cn. We apply the lemma to the
case where U ⊂ X = End(Cn) is the subspace of diagonal matrices and H = Sn is
the permutation group which permutes the e1, . . . , en. In particular, a permutation
σ ∈ Sn acts on U by the rule

(59) σ ·

λ1
. . .

λn

 =

λσ(1)
. . .

λσ(n)


We will first show that G ·U = X. Consider the continuous map π : X → Cn

which sends a matrix x to the coefficients p1(x), . . . , pn(x) of its characteristic poly-
nomial. This map can be shown to be surjective. The subset V ⊂ Cn consisting of
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the coefficients of monic polynomials with distinct roots is an open set in the Eu-
clidean topology on affine space. Thus, π−1(V) ⊂ X is an open set which consists
of matrices with distinct eigenvalues.1 Finally, we note that any matrix which has
distinct eigenvalues can be diagonalized.

Next, we must show that p1|U , . . . , pn|U generate C[U]Sn . Let x ∈ X be the
matrix diag(λ1, . . . , λn). Then the characteristic polynomial of x is

(60) det(x + t1) = σn(λ) + · · ·+ σ1(λ)tn−1 + tn

where σi is the ith symmetric polynomial. We have already recalled in the last lec-
ture that the elementary symmetric polynomials generate the ring of all symmetric
functions. This completes the proof. �

1An open set in the Euclidean topology on affine space is automatically dense in the Zariski
topology.
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An explicit description of the Hilbert scheme

Today we will prove an explicit characterization of the Hilbert scheme. Let

(61) Hn ⊂ Hom(Cn, Cn)⊕2 ⊕ Cn ⊕ (Cn)∗

is the set of tuples (X, Y, i, j) which satisfy

(62) [X, Y] + ij = 0.

Also define

(63) Hs
n ⊂ Hn

to be the subspace where

• the vector i(1) generates Cn under the action by X, Y. This means that
given v ∈ Cn there exists integers k, l ≥ 0 such that v = XkYli(1).

This last condition is called a stability condition. We will see many versions of it
in future lectures.

THEOREM 4.0.1. For any n the Hilbert scheme Hilbn(A2) is a nonsingular algebraic
variety of dimension 2n. Moreover, there is an isomorphism of algebraic varieties

(64) Hilbn(A2) ' Hs
n // GL(n, C).

There is a similar description of the symmetric product of A2.

THEOREM 4.0.2. There is an isomorphism of algebraic varieties

(65) SnA2 ' Hn // GL(n, C).

Moreover, the natural map Hs
n ↪→ Hn induces the Hilbert–Chow morphism

(66) πHC : Hilbn(A2)→ SnA2.

4.1. A DESCRIPTION OF THE SYMMETRIC PRODUCT

We will begin with the description of the symmetric product which means we
will momentarily forget about the stability condition. First, let’s carefully describe
how GL(n, C) acts on Hn. The action is a restriction of the most natural one where
GL(n; C) acts on endomorphisms of Cn by conjugation and acts on Cn (respectively
(Cn)∗) in the defining (respectively antidefining) way. Explicitly, for g an invertible
n× n matrix and (X, Y, i) ∈ H′n the action is

(67) g · (X, Y, i, j) def
=
(

gXg−1, gYg−1, gi, jg−1
)

.

The following lemma is a direct calculation and can be found in [Nak99, §2].

23
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Lemma 4.1.1. Suppose [X, Y] + ij = 0 as above. Let S ⊂ Cn be the subset

(68) ∑(Xn1Ym1 · · ·XnkYmk)i(C).

Then j|S ≡ 0.

Suppose that

(69) O
def
= GL(n, C) · (X, Y, i, j)

is a closed orbit. Using S ⊂ Cn as in the lemma, we can decompose

(70) Cn = S⊕ S⊥.

With respect to this decomposition the matrices (X, Y, i, j) have the form

(71) X, Y =

(
? ?
0 ?

)
, i =

(
?
0

)
, j =

(
0 ?

)
.

By closedness we can further assume that

(72) X, Y =

(
? 0
0 ?

)
, i =

(
0
0

)
, j =

(
0 0

)
.

Thus, the condition [X, Y] + ij = 0 simply becomes [X, Y] = 0. Choose a basis
so that X, Y are both upper triangular. Then, by the closedness assumption we can
assume that X, Y are diagonalizable. The equivalence with SnA2 associates a closed
orbit to the simultaneous eigenvalues of the matrices X, Y.

Remark 4.1.2. The above argument can be modified to give a short proof that
End(Cn) // GL(n, C) ' An. Indeed, every matrix admits a basis for which it is
upper triangular. If we assume a matrix lies in a closed orbit, then we can also
assume it is diagonalizable. The equivalence then sends a closed GL(n, C)-orbit to
its n-tuple of eigenvalues.

4.2. RELATING CLOSED POINTS

Before turning to the proof of theorem 4.0.1, we will give a heuristic argument
for the result. First, it turns out that we can simplify the description of Hn.

Lemma 4.2.1. Suppose that (X, Y, i, j) ∈ Hs
n. Then j = 0.

Let H̃s
n be the subspace consisting of (X, Y, i) with the property that [X, Y] = 0

and i generates Cn under the action by X, Y. Then as a corollary of this lemma we
have GL(n; C)-equivariant isomorphism

(73) H̃s
n ' Hs

n.

Let’s see how the data of a triple (X, Y, i) ∈ H̃s
n gives rise to a closed point in

Hilbn(A2). Notice that a closed point in Hilbn(A2) is, by definition, an ideal I in
C[z1, z2] such that C[z1, z2]/I is an n-dimensional vector space. Define the linear
map

(74) φ(X,Y,i) : C[z1, z2]→ Cn
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by the formula φ(X,Y,i)( f ) = f (X, Y)i(1). Since im φ is invariant under the action
of X, Y and contains im i we see that φ is surjective by the stability condition. Thus
I = ker φ is an ideal in C[z1, z2] and dimC(C[z1, z2]/I) = n.

Next, suppose I is an ideal of codimension n and let V = C[z1, z2]/I. Then we
have operators X = z1, Y = z2 and i : C → V defined by i(1) = 1 mod I. It is
automatic that [X, Y] = 0 and that the stability condition holds.

It is not hard to check that these two operations are mutually inverse to one
another, which thus gives an isomorphism of sets between H̃s

n/GL(n, C) and codi-
mension n ideals in C[z1, z2].

4.3. PROOF OF THE THEOREM

By the isomorphism (73), we see that theorem 4.0.1 follows from the following
result.

Proposition 4.3.1. The Hilbert scheme of n-points on affine space Hilbn(A2) is isomor-
phic to the nonsingular algebraic variety

(75) H̃s
n // GL(n, C).

PROOF. We will use the algebraic slice theorem as formulated in the previous
lecture to argue why H̃s

n // GL(n; C) is nonsingular. Before taking the quotient, we
need to see that Hs

n is non-singular. Consider the map

(76) F : End(Cn)⊗2 ⊗ Cn → End(C2)

defined by F(X, Y, i) = [X, Y]. Let S be the subset of End(Cn)⊗2 ⊗ Cn consisting
of triples (X, Y, i) satisfying the stability condition. Observe that H̃s

n = (F|S)−1(0).
To show that H̃s

n is non-singular it suffices to show that the derivative of F|S has
constant rank.

Lemma 4.3.2. Let D = D(X,Y,i)(F|S) be the derivative of the map F|S at (X, Y, i) ∈ S.
Then

(77) coker D = {A ∈ End(Cn) | [X, A] = [Y, A] = 0}.

Using this description we can define a map coker D → Cn by the rule A 7→
A(i(1)). Conversely, define a map Cn → coker D by sending v to the endomor-
phism A which satisfies

(78) Av(XkYli(1)) = XkYlv

for integers k, l ≥ 0. This is enough to define Av by the stability condition. These
maps are clearly mutual inverses so that coker D ' Cn. Thus, by the constant rank
level set theorem (see [Lee13][Theorem 5.12]) we see that H̃s

n is non-singular.

Next, we will apply Luna’s slice theorem to see that H̃s
n // GL(n, C) is non-

singular. For this we need to check that the action is free. Suppose that g ∈
GL(n, C) stabilizes (X, Y, i). This means that

(79) gXg−1 = X, gYg−1 = Y, gi = i.
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The last equality implies that ker(g − 1) ⊂ Cn contains im i. But the first two
equations imply that this subspace is stabilized by X, Y. Thus by the stability con-
dition g = 1. By the slice theorem

(80) Y def
= H̃s

n // GL(n, C) = H̃s
n/GL(n, C)

is a non-singular variety and the map

(81) H̃s
n → Y

is an étale principal GL(n, C)-bundle.

Now, to characterize Y as the Hilbert scheme of n-points on A2 we need to
construct a universal family over Y of 0-dimensional subschemes of size n. There
is a family on Y→ Y defined by the natural surjection

(82) f (z1, z2) ∈ C[z1, z2] 7→ f (X, Y)i(1) ∈ Cn.

To see that it is a universal family we need to show that if π : Z → U is any flat fam-
ily of 0-dimensional closed subschemes of A2 of size n, then there exists a unique
morphism φ : U → Y fitting into the pullback square

(83)
Z Y

U Y.

π

φ

By assumption π∗OZ is a locally free sheaf of rank n on U. Just as in the previ-
ous section, define X, Y as the OU-linear operators acting on π∗OZ given by multi-
plication by the coordinate functions z1, z2 respectively. Also let i be the image of
the constant polynomial 1 thought of as an sheaf homomorphism OU → π∗OZ. If
we fix an open cover U = ∪αUα so that π∗OZ is trivializable over Uα then we obtain
morphisms Uα → H̃s

n for each α. Composing with H̃s
n → Y these glue together to

define a morphism φ : U → Y. By construction we have φ∗Ỹ = Z. �

Remark 4.3.3. Notice that the proof of this result didn’t rely much of our knowl-
edge of the GIT quotient. Since the GL(n, C) action on H̃s

n is free, the GIT quotient
is the same as the set-theoretic quotient.
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Moduli spaces of sheaves, I

Last time we showed that the Hilbert scheme of n points in A2 is non-singular
and equivalent to the quotient of

(84) H̃s
n = {(X, Y, i) | [X, Y] = 0, and stability} ⊂ End(Cn)⊕2 ⊕ Cn.

by the natural GL(n, C) action. Today we will wrap up this discussion with a com-
putation of the dimension of Hilbn(A2) and some examples of Hilbert schemes for
small values of n. Then, we turn to a sheaf-theoretic description of the Hilbert
scheme.

5.1. DIMENSION OF THE HILBERT SCHEME

For (X, Y, i) ∈ H̃s
n let (C•, d) be the following complex

(85) End(Cn)
d1−→ End(Cn)⊕2 ⊕ Cn d2−→ End(Cn)

where the first arrow is the derivative of the GL(n, C) action

(86) d1(A) = ([A, X], [A, Y], Ai)

and the second arrow is

(87) d2(A, B, v) = [X, A] + [Y, B].

Then the tangent space at (X, Y, i) is

(88) T(X,Y,i) Hilbn(A2) ' H1(C, d).

We have already shown that the dimension of the cokernel of d2 is n. By the stabil-
ity condition we have ker d1 = 0. This shows that dim H1(C) = 2n.

5.2. EXAMPLES

Let’s consider some examples of Hilbn(A2) for small n. For n = 1 we have
X = x, Y = y for some numbers x, y ∈ C. Furthermore, the stability condition
implies that i 6= 0. Using the C×-action we can assume that i = 1. The ideal
corresponding to the pair x, y is

(89) I = { f (z1, z2) ∈ C[z1, z2] | f (x, y) = 0}.

This is simply the maximal idea corresponding to (x, y) ∈ A2. Thus Hilb1(A2) =
A2.

27
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Next we look at n = 2. Then X, Y are 2× 2 matrices. Suppose that at least one
of X, Y have distinct eigenvalues. Since [X, Y] = 0 we can assume that

(90) X =

(
x1 0
0 x2

)
, Y =

(
y1 0
0 y2

)
with (x1, y1) 6= (x2, y2). By the stability condition we can take

(91) i(1) =
(

1
1

)
The corresponding ideal is

(92) I = { f (z1, z2) ∈ C[z1, z2] | f (xi, yi) = 0},
which corresponds to two distinct points in A2. Thus away from the diagonal in
A2 ×A2 the Hilbert scheme agrees with S2A2.

The interesting stuff happens when we assume that X, Y each have one eigen-
value. We cannot assume that X, Y are both diagonalizable as this violates the
stability condition. Thus, we have

(93) X =

(
x a
0 x

)
, Y =

(
y b
0 y

)
for some (a, b) ∈ A2 − 0. In this basis we can assume that

(94) i(1) =
(

0
1

)
The corresponding ideal is

(95) I =
{

f (z1, z2) ∈ C[z1, z2] | f (x, y) =
(

a
∂ f
∂z1

+ b
∂ f
∂z2

)
(x, y) = 0

}
.

This corresponds to two infinitesimally close points in A2 at (x, y) which point to
each other in the direction of the vector field a ∂

∂z1
+ b ∂

∂z2
.

5.3. TORSION-FREE SHEAVES

A quasi-coherent sheaf F on an algebraic variety X is torsion-free if for every
affine open subset U ⊂ X the space of local sections F(U) is torsion-free as a mod-
ule over the ring of functions O(U) on U. That is, for ever nonzero section s ∈ F(U)
and nonzero function f : U → C one has f · s 6= 0. A typical example of a torsion-
free sheaf is the sheaf of sections of a vector bundle; the condition of being a locally
free implies torsion-free. We will mostly be concerned with coherent torsion-free
sheaves.

For any quasi-coherent sheaf F there is a canonical morphism

(96) F → (F∨)∨ = F∨∨

where F∨ = HomOX (F,OX) is the dual sheaf.1 The main technical result about
torsion-free sheaves that we will use is the following.

THEOREM 5.3.1 ([??]). Let X be a non-singular algebraic variety and suppose F is a
coherent torsion-free sheaf on X. Then:

1A quasi-coherent sheaf which is isomorphic to its double dual is called reflexive.
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• there exists a Zariski open set U ⊂ X of codimension≥ 2 such that F|U is locally
free.
• If dim X = 2 then the sheaf F∨∨ is locally free of finite rank and the morphism
F → F∨∨ is injective. Restriction of this morphism to U results in an isomor-
phism F|U

∼−→ F∨∨|U .

By the second item we see that any torsion-free sheaf is a subsheaf of a coherent
locally free sheaf. Consider the dual F∨ and write this as the quotient of a locally
free sheaf E. Then F∨∨ is a subsheaf of E∨ which is still locally free.

Example 5.3.2. Suppose that F is a rank one torsion-free sheaf on a surface S. Since
F∨∨ is locally free it is a line bundle.

Example 5.3.3. Suppose that J ∈ Hilbn(X) where X is any affine variety (not nec-
essarily of dimension two). Let FJ be the corresponding ideal sheaf of OX which
satisfies Γ(X,FJ) = J. Then FJ is torsion-free and O/FJ is a torsion sheaf

(97) Γ(X,OX/J) = C[X]/J.

Example 5.3.4. Consider the ideal sheaf of the point 0 ∈ A2. This sheaf is torsion-
free but not locally free.

Example 5.3.5. Consider the morphism of sheaves on A2

(98) φ : O→ O⊕2

defined by Φ( f ) = (z1 f , z2 f ). Then φ is injective and its image is

(99) im(φ) = {( f1, f2) | z1 f2 = z2 f1} ⊂ O⊕2.

We claim that

(100) F
def
= coker φ

is a torsion-free sheaf. Indeed let ψ : O⊕2 → O be ψ(g1, g2) = z2g1 − z1g2. Then
ker ψ = im φ so

(101) F ' im ψ = { f ∈ O | f (0, 0) = 0}.
By this last equivalence we see that F is isomorphic to a subsheaf of O.

More generally one has the following. Let V be a finite dimensional vector
space and A1, A2 ∈ End(V). Denote by V = O⊗V the trivial vector bundle on A2

with fiber V. Define

(102) φ : V→ V⊗ C2

by s 7→ ((A1 − z1)s, (A2 − z2)s).

Lemma 5.3.6. The sheaf coker φ is torsion-free.
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Moduli spaces of sheaves, II

We are heading towards a definition of the Hilbert scheme in terms sheaves.

6.1. CHERN CLASSES

Let X be a smooth algebraic variety over C, which you are free to think of as
just complex manifold. The jth Chern class of a complex vector bundle E over X is
an element

(103) cj(E) ∈ H2j(X; R).

The total Chern class is usually denoted

(104) c(E) = ∑
j≥0

cj(E) ∈ H2•(X; R),

or its one parameter version

(105) ct(E) = ∑
j≥0

tjcj(E) ∈ H2•(X; R)[t].

The Chern classes are determined by the following axioms.

• The zeroeth Chern class. For any bundle E→ X one has c0(E) = 1.
• Naturality. For any bundle E→ X and smooth map f : Y → X one has

(106) c( f ∗E) = f ∗c(E) ∈ H2•(X; R).

• Whitney sum. For a finite collection of bundles Ei one has

(107) c(⊕iEi) = ∏
i

c(Ei).

• Normalization. Let O(1) be the dual of the tautological line bundle over CP1.
Then

(108)
∫

CP1

c1(O(1)) = 1.

We will need to extend the definition of Chern classes to coherent sheaves. Let
Coh(X) be the category of coherent sheaves on X and let Vect(X) ⊂ Coh(X) be
the subcategory of locally free coherent sheaves. This subcategory is equivalent
to the category of holomorphic vector bundles on X; the equivalence is obtained
by taking the sheaf of holomorphic sections of a given holomorphic vector bundle.
Both Coh(X) and Vect(X) are abelian categories.
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Construction 6.1.1. Given any abelian category A we can look at the free abelian
group Z[A] which is generated by the isomorphism classes of objects of A. Given
a short exact sequence

(109) 0→ A→ B→ C → 0

in A we can form the element

(110) − [A] + [B]− [C] ∈ Z[A].

Let E(A) be the subgroup of Z[A] generated by elements of this form. The Grothendieck
group of the abelian category A is defined as the quotient group

(111) K0(A)
def
= Z[A]/E(A).

By definition, if (109) is a short exact sequence then we have the relation

(112) [B] = [A] + [C]

in K0(A).

If A0 ⊂ A is an additive (not necessarily full) subcategory which is closed under
extensions then the above definition endows K0(A0) also with the structure of an
abelian group. Such an A0 is called an exact category.

We apply this construction to the situation

(113) A0 = Vect(X) ⊂ Coh(X) = A.

Notice that tensor product endows both K0(X) = K0(Vect(X)) with the structure
of a commutative ring.

Lemma 6.1.2. Let X be a smooth complex variety or a complex manifold.

(1) The subring E(Vect(X)) ⊂ Z[Vect(X)] is an ideal, and therefore K0(X) has the
structure of a commutative ring with unit given by the trivial rank one vector
bundle.

(2) The group K0(Coh(X)) is naturally a module for K0(X).
(3) The embedding Z[Vect(X)] ↪→ Z[Coh(X)] determines a group homomorphism

(114) i : K0(X)→ K0(Coh(X)).

By the axioms of Chern classes above, we see that the total Chern class defines
a group homomorphism

(115) c : K0(X)→ H•(X).

An immediate consequence of this is a slightly more general version of the Whitney
sum axiom. If we have any exact sequence of vector bundles

(116) 0→ E′ → E→ E′′ → 0

then

(117) ct(E) = ct(E′) · ct(E′′).

Remark 6.1.3. In fact, there is a more refined relationship between K0(X) and the
cohomology of X.

The Chern character of a complex vector bundle E→ X is an element

(118) ch(E) ∈ H2•(X; R)
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defined formally as follows. Suppose that ξi are constants and x is a formal variable
such that

(119) ∑
i

ci(E)xi = ∏
i
(1 + ξix).

Then the Chern character is defined by

(120) ch(E) = ∑
i

eξi .

The Chern character enjoys a similar sum rule ch(⊕iEi) = ∑i ch(Ei) and also a
product identity

(121) ch(⊗iEi) = ∏
i

ch(Ei).

Immediately, then, we see that the Chern character defines a ring homomorphism

(122) ch : K0(X)→ H•(X).

Now, we can see how to extend Chern classes to coherent sheaves. Given a
coherent sheaf F on a smooth projective algebraic variety over C there exists a
locally free resolution of F (that is, a resolution by vector bundles) of the form

(123) 0→ E−n → E−n+1 · · · → E−1 → E0 → F → 0.

In the case of a general complex manifold such a resolution is only guaranteed to
exist locally. Using such a resolution we define

(124) c(F) def
= ∑

i
(−1)ic(Ei) ∈ H•(X).

One can show that this definition does not depend on the resolution.

This construction can be refined to providing an inverse j to the ring homomor-
phism i : K0(X)→ K0(Coh(X)) by the formula

(125) j([F]) = ∑
i
(−1)i[Ei].

The proof of the fact that these homomorphisms are inverses to each other is out-
side of the scope of these notes.

An important computational tool we will use, but not spend time providing
background on, is the Grothendieck–Riemann–Roch theorem. This very powerful
result is a generalization of the Hirzebruch–Riemann–Roch theorem in the context
of holomorphic vector bundles and complex manifolds.

Suppose that E is a coherent sheaf of X and that f : X → Y is a proper map
between smooth quasi-projective varieties. The Grothendieck–Riemann–Roch the-
orem presents a formula for the characteristic classes of f!E as

(126) ch( f!E) · Td(Y) = f∗ (ch(E) · Td(Y))

where

• ch is the Chern character as above which admits an expansion like

(127) ch = rk+c1 +
1
2
(c2

1 − 2c2) +
1
3!
(c3

1 − 3c1c2 + 3c3) + · · · .
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• td is the Todd class which admits an expansion like

(128) td = 1 +
1
2

c1 +
1

12
(c2

1 + c2) +
1
24

c1c2 + · · ·

• f! = ∑(−1)iRi f∗ : K0(X) → K0(Y) is the higher direct image or pushfor-
ward map in K-theory.
• f∗ : H•(X)→ H•(Y) is the pushforward map in cohomology.

Example 6.1.4. Suppose that Y = pt and that E is a vector bundle E→ X. Then

(129) ch( f!E) = χ(X, E)

is the holomorphic Euler characteristic. In this case the map f∗ in cohomology is of
degree −2n, so the theorem implies the Hirzebruch–Riemann-Roch theorem

(130) χ(X, E) = [ch(E) td(X)]2n .

Example 6.1.5. Suppose that we have a closed embedding i : Y ↪→ Z with corre-
sponding ideal sheaf IY. From the short exact sequence

(131) 0→ IY → OX → OY → 0

we can see that

(132) ck(IY) = (−1)k(k− 1)![Y]

where k is the codimension of Y in X and [Y] is the fundamental class of Y. In
particular if X is d-dimensional and Y is zero-dimensional with n-connected com-
ponents then

(133) cd(IY) = (−1)dn(d− 1)!.

6.2. TORSION-FREE SHEAVES ON SURFACES

Recall that if E is a torsion-free sheaf on a surface X then the natural map E →
E∨∨ is injective. In particular, there is an induced short exact sequence

(134) 0→ E→ E∨∨ → Q→ 0

The cokernel sheaf Q has the property that its support is zero-dimensional.

Consider projective space P2 and let `∞ ⊂ P2 be the line

(135) `∞ = {(0 : z2 : z3)} ⊂ P2.

Definition 6.2.1. Let E be a torsion-free sheaf on P2 of rank r. A framing is an
isomorphism Φ : E|`∞

'−→ O⊕r
`∞

. Denote a framed sheaf by a pair (E, Φ).

For a torsion-free sheaf the only topological invariant is its second Chern class,
which follows from the following lemma.

Lemma 6.2.2. Suppose E is a torsion-free sheaf on P2 which admits a framing. Then
c1(E) = 0.

PROOF. From the short exact sequence (134) we see that c1(E) = c1(E
∨∨). By

the framing condition, the support of the cokernel sheaf Q cannot intersect `∞, thus
E|`∞ ' E∨∨|`∞ . Finally, since E∨∨ is a line bundle we have 0 = c1(E

∨∨|`∞) =
c1(E

∨∨)|`∞ which implies c1(E
∨∨) = 0. �
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A map of framed sheaves

(136) F : (E, Φ)→ (E′, Φ′)

is a map of sheaves F : E→ E′ which intertwines the framings.

Definition 6.2.3. Let M f r(r, n) be the moduli space of framed sheaves (E, Φ) on P2

of rank r and c2(E) = n. As a set this is the set of isomorphism classes

(137) {[(E, Φ)] | rk(E) = r, c2(E) = n}.

This only really defines M f r(n, r) as a set, but it can be shown that it can be
given the structure of a scheme [Nak99]. The rank one case is especially relevant to
the previous lectures.

Proposition 6.2.4. There is an isomorphism

(138) M f r(1, n) ' Hilbn(A2).

PROOF. Let E be a rank one torsion-free sheaf of second Chern class n. By the
framing condition we have an embedding

(139) E ↪→ E∨∨ ' OP2 .

We have already pointed out that the quotient sheaf Q = E∨/E has zero-dimensional
support away from `∞ ⊂ P2 and satisfies

(140) dim Γ(P2 − `∞,Q) = n.

This gives the correspondence

(141) M f r(1, n) '−→ Hilbn(P2 − `∞) ' Hilbn(A2)

�

Next time we will explain the so-called ADHM description of the moduli space
M f r(r, n) which is in the same spirit as the description of the Hilbert scheme in
terms of matrices. From there we will discuss the symplectic structure on these
moduli spaces.





LECTURE 7

Moduli spaces of sheaves, III

Today we will deduce the following description of the moduli space of torsion-
free rank r sheaves. Let H(r, n) be the affine subspace of

(142) End(Cn)⊕n ⊕Hom(Cr, Cn)⊕Hom(Cn, Cr)

consisting of tuples (X, Y, I, J) such that

• [X, Y] + I J = 0.
• there exists no proper subspace S ⊂ Cn such that X · S ⊂ S, Y · S ⊂ S and

im I ⊂ S.

We refer to the last item as the stability condition. There is an action of GL(n, C) on
H(r, n) defined by

(143) g · (X, Y, I, J) = (gXg−1, gYg−1, gI, Jg−1).

THEOREM 7.0.1 (Barth). Let M(r, n) denote the moduli space of torsion-free sheaves
on P2 of rank r and c2 = n. There is an isomorphism

(144) M(r, n) ' H(r, n)/GL(n, C).

Like the Hilbert scheme, there is a functorial definition of M(r, n) which makes
its scheme structure manifest. The GL(n, C) action on H(r, n) is free so also like
in the case of the Hilbert scheme H(r, n)/GL(n, C) agrees with the affine GIT quo-
tient. The above bijection of sets can be enhanced to an isomorphism of affine
schemes.

This lecture closely follows the arguments in §2 of [Nak99].

7.1. TECHNICAL LEMMA

Suppose that E is any sheaf on P2 and let E(k) = E⊗O O(k). Also let Q denote
the rank two vector bundle

(145) Q = TP2(−1)

where TP2 is the tangent bundle. In the following we assume that E is a torsion-free
sheaf of rank r with c2(E) = n. We assume that E is framed at the line `∞ = {[0 :
z1 : z2]} ⊂ P2.

Lemma 7.1.1. For p = 1, 2 and q = 0, 2 one has

(146) Hq(P2, E(−p)) = 0

and

(147) Hq(P2, E(−1)⊗ Q).
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PROOF. Tensoring the short exact sequence

(148) 0→ O(−1)→ O→ O`∞ → 0,

with E(−p) yields the short exact sequence

(149) 0→ E(−p− 1)→ E(−p)→ E(−p)|`∞ → 0.

Since E|`∞ ' O⊕r
`∞

we have

(150) H0(P2,E(−p)|`∞) = H1(P2,E(−p)|`∞) = 0.

From the resulting long exact sequence in cohomology we obtain that

(151) H0(P2,E(−p− 1)) ' H0(P2,E(−p))

for p ≥ 1 and

(152) H2(P2,E(−p− 1)) ' H2(P2,E(−p))

for p ≤ 1.

Recall that since E is torsion-free we have that E∨∨ is locally free and that the
canonical map E ↪→ E∨∨ is injective. Hence there is an injection H0(P2,E(−p)) ↪→
H0(P2,E∨∨(−p)). By Serre duality this means we have an inclusion

(153) H0(P2,E(−p)) ↪→ H2(P2, (E∨∨(p− 3)))∨

By the Serre vanishing theorem, for p large enough the right hand side is trivial.
Combining with (151) we see that

(154) H0(P2,E(−1)) ' H0(P2,E(−2)) ' · · · ' 0.

Also by Serre vanishing together with (152) we see that

(155) H2(P2,E(−2)) ' H2(P2,E(−1)) ' H2(P2,E) ' · · · ' 0.

By a similar argument one obtains that Hq(P2,Q⊗ E(−1)) for q = 0, 2. �

7.2. THE MONADIC DESCRIPTION OF A TORSION-FREE SHEAF

Define the following vector spaces

• V−1 = H1(P2,E(−2)). Note that by the lemma above we have

(156) χ(P2,E(−2)) = −dim H1(P2,E(−2)).

Also by Hirzebruch–Riemann–Roch

χ(P2,E(−2)) =
∫

P2

ch(E(−2)) td(P2)

= r
∫

P2

ch(O(−2)) td(P2)−
∫

P2

c2(E)

= rχ(P2,O(−2))− n = −n.

Thus dim V−1 = n, so V−1 ' Cn.
• V0 = H1(P2,E(−1) ⊗ Q∨). This vector space has dimension 2n + r, so

V0 ' C2n+r.
• V1 = H1(P2,E(−1)). This vector space has dimension n, so V1 ' Cn.
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We won’t prove the following lemma.

Lemma 7.2.1. Let E be a framed torsion-free sheaf. Then, there is a complex of sheaves

(157) (V•, d)

with Vi = OP2(i)⊗Vi such that H−1 = H1 = 0 and

(158) H0(V•, d) ' E.

Let a = d−1→0 and b = d0→1 be the differentials in the complex of sheaves V•.
We can view

a ∈ H0(P2,OP2(1))⊗Hom(V−1, V0)

b ∈ H0(P2,OP2(1))⊗Hom(V0, V1)

In particular, a, b must be of the form

a = a0z0 + a1z1 + a2z2

b = b0z0 + b1z1 + b2z2

for some linear maps ai : V−1 → V0, bi : V0 → V1. Since d2 = 0 ⇐⇒ ba = 0 we
have the relations

b0a0 = 0, b0a1 + b1a0 = 0
b1a1 = 0, b1a2 + b2a1 = 0
b2a2 = 0, b0a2 + b2a0 = 0.

By the technical lemma we can form the exact sequence

(159) 0→ V−1 → ker b→ E→ 0.

Consider the restriction of this complex of sheaves to the line at ∞

(160) 0→ V−1|`∞

a|`∞−−→ ker b|`∞ → E|`∞ → 0.

Note that a|`∞ = a1z2 + a2z2, b|`∞ = b1z1 + b2z2. From the resulting long exact
sequence in cohomology we see that

H0(`∞, ker b|`∞) ' H0(`∞,E|`∞) ' E|p
H0(`∞, ker b|`∞) ' H0(`∞,E|`∞) = 0

where p ∈ `∞. The first isomorphism implies that

(161) W def
= H0(`∞, ker b|`∞)

gives the trivialization of E at ∞, and hence the choice of basis of W gives the
framing.

Similarly, we have the short exact sequence

(162) 0→ ker b|`∞ → V0|`∞

b|`∞−−→ V1|`∞ → 0.

The long exact sequence in cohomology yields another short exact sequence

(163) 0→W → V0

(
b1
b2

)
−−−→ z1V1 ⊕ z2V1 → 0.
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where we have identified H0(`∞,O`∞(1)) ' Cz1 + Cz2. From this short exact se-
quence we see that W = ker b1 ∩ ker b2. Applying similar arguments to the dual
sequence we see that the map

(164) (a1, a2) : O`∞(1)⊗V−1 ' z1V−1 ⊕ z2V−1 → V0

is injective and that a|`∞ is injective at each fiber.

Restricting the original short exact sequence to [0 : 1 : 0] ∈ `∞ we have a
sequence

(165) V−1 a1−→ V0 b1−→ V1

and ker b1/ im a1 = E[0:1:0] ' ker b1 ∩ ker b2 = W. Thus im a1 ∩ ker b2 = im a1 ∩
W = 0 so that b2a1 : V−1 → V1 is injective. Since V−1, V1 are of the same dimen-
sion, this map is an isomorphism.

Using this isomorphism we can identify V = V−1 = V1 and the maps in the
sequence

(166) V ⊕V
(a1,a2)−−−→ V0 (b1,b2)

t

−−−→ V ⊕V

with

(167) a1 =

−1V
0
0

 , a2 =

 0
−1V

0


and

(168) b1 =
(
0 −1V 0

)
, b2 =

(
1V 0 0

)
.

From ba = 0 we obtain the following form of the remaining components

(169) a0 =

X
Y
J

 , b0 =
(
−Y X I

)
.

Here [X, Y] + I J = 0.

This gives us the following monadic description of E.

(170) V ⊗OP2(−1)

V
V
W

⊗OP2 V ⊗OP2(1).a b

where

(171) a =

z0X− z1
z0Y− z2

z0 J


and

(172) b =
(
−z0Y + z2 z0Y− z1 z0 I

)
.

Now to go from the sheaf theoretic description to the description in terms of
matrices we simply restrict this sequence to P2 \ `∞ ' A2. The following lemma
completes the result.
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Lemma 7.2.2. Suppose that (X, Y, I, J) satisfy [X, Y] + I J = 0. Then

(1) ker a|A2 = 0.
(2) b|A2 is surjective if and only if the stability condition holds.





LECTURE 8

Symplectic reduction, I

We turn to an alternative description of affine (and twisted1) GIT quotients.
Let’s motivate this by considering a simple example.

8.1. REDUCTIVE VERSUS UNITARY

Let V be a vector space equipped with a hermitian metric. Let G ⊂ U(V) be a
connected closed Lie group acting by unitary transformations on V.

Warning: In this section G denotes a real compact Lie group. We will denote its
complex form by GC.

We have defined the affine GIT quotient

(173) V // GC = Spec C[V]G
C
.

The underlying space consists of the set of closed GC-orbits. Let’s consider the
example

(174) V = End(Cn)

with g ∈ G = U(n) acting by conjugation g · B = g−1Bg. In this case, GC =
GL(n, C), and we have identified the closed GL(n, C)-orbits: a matrix has a closed
GC-orbit if and only if it is diagonalizable. Hence

(175) V // GC = End(Cn) // GL(n, C) ' Cn.

On the other hand, a matrix B satisfies

(176) [B, B†] = 0

if and only if it can be diagonalized by a unitary matrix (to see this use Schur’s
lemma which states that any complex square matrix is unitary equivalent to an
upper triangular matrix). Thus there is a bijection

(177) End(Cn) // GL(n, C) ' {B ∈ End(Cn) | [B, B†] = 0}/U(n).

If we let

(178) µ : V → g∗

be µ(B) = i
2 [B, B†] (where we use the hermitian form to identify g = Lie(U(n))

with g∗) then we can rewrite this as

(179) V // GC ' µ−1(0)/U(n).

1We introduce twisted GIT quotients today
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The right hand side is called the symplectic, or Hamiltonian, reduction We will see
this is a general feature about affine GIT quotients. Before that, we introduce a
slight variant of the affine GIT quotient.

8.2. TWISTED GIT QUOTIENT

For an affine algebraic variety X which is acted on by a reductive group G we
have seen that the GIT quotient X // G is in bijective correspondence with the set
of closed G-orbits.

A projective variety X ⊂ Pn has a canonical Z≥0-grading on its algebra of global
functions

(180) A• = ⊕n≥0An

where An is the algebra of degree n homogenous polynomials restricted to X. One
can recover X from the graded algebra A• via the ‘proj’ construction

(181) X = Proj(X).

The closed points of Proj(X) correspond to the set of graded ideals J• ⊂ A• which
are maximal among graded ideals not containing A+ = ⊕n>0An.

Let us return back to the situation of a reductive group G acting on an affine
algebraic variety X. Suppose that χ is a character of G, meaning a homomorphism
χ : G → C×. Define the space of χ-twisted invariant functions to be

(182) C[X]G,χ def
= { f ∈ C[X] | f (g · x) = χ(g) f (x)} ⊂ C[X].

Notice that when χ = 1 then this return the usual G-invariants, but in general
C[X]G,χ is not an algebra.

Even though C[X]G,χ is not an algebra, we obtain a canonical graded algebra
by the formula

(183) A• = ⊕n≥0C[X]G,χn
.

Notice that A0 = C[X]G is the usual algebra of invariants functions.

Definition 8.2.1. The twisted GIT quotient is the quasi-projective variety

(184) M //χ G def
= Proj

(
⊕n≥0C[X]G,χn

)
The canonical map C[X]G → ⊕n≥0C[X]G,χn

induces a projective map

(185) π : X //χ G → X // G.

Consider a character χ as above. Extend the G-action on X to a G-action on the
total space of the trivial line bundle X× C by the formula

(186) g · (x, µ) = (g · x, χ(g−1)µ).

A point x ∈ X is called χ-semistable if for any µ ∈ C× ⊂ C the closure of the orbit
of (x, µ) is disjoint from the zero section:

(187) O(x,µ) ∩ (X× {0}) = ∅.

An equivalent way to understand semistability is the following.
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Lemma 8.2.2. A point x ∈ X is χ-semistable if and only if there exists an f ∈ C[X]G,χn
,

for some n ≥ 1, such that f (x) 6= 0.

From this characterization it is easy to see that the set of χ-semistable elements

(188) Xss
χ ⊂ X

is G-invariant.

THEOREM 8.2.3. Suppose that G is a reductive group acting on an affine variety X
and let χ be a character of G. Then

1. The map X //χ G → X // G is surjective.
2. As topological spaces one has

(189) X //χ G ' Xss
χ / ∼

where O ∼ O′ iff O∩O
′ ∩ Xss 6= ∅.

3. There is a bijection

(190) X //χ G ' {closed orbits in Xss}.

Notice that orbits which are closed in Xss may not be closed in X, so that the
twisted GIT reduction has the potential to see a wider class of orbits.

Example 8.2.4. Consider the C× action on A2 which scales each direction the same.
Then we have seen that

(191) A2/C× = {0} ∪ P1, A2 // C× = {0}.
Let χ(λ) = λ. Then

(192) (A2)ss
χ = A2 \ 0,

and hence

(193) A2 //χ C× = P1.





LECTURE 9

Symplectic reduction, II

9.1. RESOLUTION OF SINGULARITIES

Recall that quotients are the most well-behaved when the group action is free.
We say a point x ∈ X is regular if the orbit Ox is closed and the stabilizer Gx is
trivial. The set of regular elements Xreg ⊂ X is open and G-invariant. Moreover,
we can consider the set of regular orbits

(194) (X // G)reg ⊂ X // G.

From the Luna slice theorem it follows that the set of regular points and the set of
regular orbits (X // G)reg is open in X // G.

THEOREM 9.1.1. The following hold.

1. If x ∈ Xreg then x is χ-stable for any character χ.
2. The subspace of regular orbits (X // G)reg is nonsingular. Let π : X //χ G →

X // G be the canonical map, then

(195) (X //χ G)reg def
= π−1(X // G)reg

is also nonsingular and the map

(196) π : (X //χ G)reg → (X // G)reg

is an isomorphism.

Recall that a morphism π : X → Y is called a resolution of singularities if X is
non-singular and π is proper and birational. Being birational means that there ex-
ists an open dense subset Y0 ⊂ Y such that π−1(Y0) is dense in X and the restriction
π : π−1(Y0)→ Y0 is an isomorphism.

As a consequence of the twisted GIT theorem above we have the following
result on resolutions of singularities.

Corollary 9.1.2. Suppose that Xreg is nonempty and that X //χ G is nonsingular and
connected. Then

(197) π : X //χ G → X // G

is a resolution of singularities.

PROOF. By the theorem we see that (X //χ G)reg is nonempty and open in X //χ

G. �
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9.2. TYPE A1 SINGULARITY

Consider the affine subvariety

(198) X def
= {(i, j) | ij = 0} ⊂ (C2)∗ × C2 ' C4.

There is an action of C× on X defined by

(199) λ · (i, j) = (λi, λ−1 j).

We first consider the affine GIT quotient X // C×.

Let End0(C2) ⊂ End(C2) denote the three-dimensional vector space of trace-
less 2× 2 matrices. Every such matrix has the form

(200) A =

(
a b
c −a

)
where a, b, c ∈ C.

Lemma 9.2.1. Let

(201) Q = {A | det(A) = 0} ⊂ End0(C2)

be the singular quadric defined by the equation

(202) a2 + bc = 0

in A3 = Spec C[a, b, c]. The map

(203) Φ : X // C× '−→ Q

defined by Φ(i, j) = ji is an isomorphism of affine varieties.

PROOF. It is easy to see that Φ̃ : X → Q is well-defined since the condition ij =
0 implies that tr(ji) = det(ji) = 0. Clearly Φ̃ descends to the map Φ : X // C× → Q.
The inverse sends a 2× 2 matrix

(204) A =

(
a b
c −a

)
∈ Q

to the pair [(iA, jA)] where iA =
(
x y

)
and jA =

(
z w

)t. If a = 0 then either
b or c must be zero; in the case b = 0 then we set x = 0, y = 1, z = c, w = 0.
It is easy to see that this is well-defined up to the C× action. If a 6= 0 then set
x = a, y = b, z = 1, w = c/a. �

Points in X with zero stabilizer are those where both i, j are nonzero. This is
equivalent to the condition that ji 6= 0. Thus

(205) (X // C×)reg ' Q \ {0}.
This is certainly a nonsingular variety.

Let’s now consider the twisted GIT quotient. For the character let’s take the
identity morphism χ = 1 : C× → C×. Suppose that (i, j; µ) ∈ X × C thought of as
elements of the trivial line bundle over X. Then using the action in (186) we have,
for λ ∈ C×

(206) λ · (i, j; µ) = (λi, λ−1 j; λ−1µ).
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Notice that if j = 0 and i 6= 0, µ 6= 0 then

(207) O(i,0;µ) = {(a, 0; α) | a 6= 0, α 6= 0} ⊂ X× C.

Thus (i, 0) is not a semi-stable point. Conversely we see that as long as j 6= 0 then
the point (i, j) is semi-stable.

Proposition 9.2.2. There is an isomorphism

(208) X //χ C× ' T∗P1.

PROOF. From the characterization of semi-stable elements we see that

(209) X //χ C× = {(L, i) | L ⊂ C2 line, i|L = 0}.

Thus, there is a canonical map X //χ C× → P1 defined by (L, i) 7→ L. This map
endows X //χ C× with the structure of a line bundle over P1. We will identify this
line bundle.

Let L ⊂ C2 be a line. A choice of a nonzero vector v ∈ L determines an isomor-
phism TLP1 'v C2/L. Hence

(210) T∗LP1 ' {i : C2 → L | i|L = 0}.
This isomorphism is independent of the choice of nonzero v ∈ L. Thus X //χ C× '
T∗P1. �

From this discussion we conclude that there is a resolution of singularities

(211) π : T∗P1 → Q.

This resolution is a special case of the so-called Springer resolution which we will
discuss next time.

9.3. SYMPLECTIC ACTIONS

Let (M, ω) be a symplectic manifold and suppose G is acting on M.

• If M is a smooth symplectic manifold then we assume that G is a real Lie
group and the action is smooth.
• If M is a symplectic algebraic variety then we assume that G is a linear

algebrac group acting algebraically.

The G-action is symplectic if it preserves the symplectic form; that is for every
g ∈ G the corresponding diffeomorphism φg satisfies φ∗gω = ω. Infinitesimally, this
means that for every ξ ∈ g = Lie(G) the corresponding vector field Xξ ∈ Vect(M)
satisfies

(212) LXξ
ω = 0.

Such vector fields are called symplectic vector fields; the space of all symplectic
vector fields Vectω(M) ⊂ Vect(M) is a sub Lie algebra of the Lie algebra of all
smooth vector fields. So, a symplectic action ρ of G on M determines a map of Lie
algebras

(213) Dρ : g→ Vectω(M).
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Locally, in the C∞ world, every symplectic vector field is determined by a func-
tion. Indeed the symplectic form determines an isomorphism of Vectω(M) with the
space of closed one-forms Ω1,cl(M). But, by the C∞-Poincaré lemma, locally every
closed one-form is exact. So, given a symplectic vector field ξ we can locally find a
function H ∈ C∞(M) such that

(214) ξ = XH

where XH = ω−1(dH) is the Hamiltonian vector field corresponding to H.

The symplectic form ω determines a Poisson bracket {−,−} on the commuta-
tive algebra of functions. The map

(215) {−,−} : C∞(M)→ Vectω(M)

is a map of Lie algebras. Every constant function is sent to the zero vector field.
Using this, one can show that there is a central extension of Lie algebras

(216) 0→ C→ C∞(M)→ Vectω(M)→ 0.

This extension may not be split.

Definition 9.3.1. A symplectic action ρ of G on M is Hamiltonian if there exists a
G-equivariant map

(217) µ : M→ g∗

such that

(1) For any a ∈ g the function

(218) Ha(x) = 〈µ(x), a〉

is a Hamiltonian function for the vector field ξa = Dρ(a).
(2) The assignment a 7→ Ha is a map of Lie algebras g→ C∞(M).

Example 9.3.2. Suppose that V is a vector space equipped with a nondegenerate
skew-symmetric bilinear form ω ∈ ∧2V∗. Thus (V, ω) is a symplectic vector space.
Suppose that G ⊂ Sp(V) acts on V in a way that preserves ω. Such an action is
always Hamiltonian. Indeed, define

(219) µ : V → g∗

by the rule

(220) 〈µ(v), a〉 = 1
2

ω(v, a · v), for all a ∈ g.

Here 〈−,−〉 denotes the canonical pairing between g and its dual.

Example 9.3.3. Suppose that N is a smooth manifold with a G-action. Then G
extends to a Hamiltonian action on T∗N with moment map defined by

(221) 〈µ(x, η), a〉g = 〈η, ξa(x)〉

where the right-hand side is the canonical pairing between one-forms and vector
fields.
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A nice way to summarize the structure of the moment map is the following. We
have pointed out that the algebra of functions on a symplectic manifold is equipped
with a Poisson bracket. More generally, we can consider manifolds (which are not
necessarily symplectic) whose functions are equipped with a Poisson bracket—
such a manifold is a Poisson manifold. For any Lie algebra g its dual g∗, thought of
as a vector space, satisfies

(222) O(g∗) = Sym(g).

The Lie bracket [−,−] : g× g → g determines a Poisson bracket on Sym(g). Thus,
g∗ has the canonical structure of a Poisson manifold.

THEOREM 9.3.4. Let M be a symplectic manifold with a Hamiltonian G action. Then
the moment map µ : M→ g∗ is a map of Poisson manifolds.

Given a Hamiltonian G action on a symplectic manifold M, a natural question
to ask is in what sense the quotient M/G is symplectic. Even if M/G is a smooth
manifold it may not be the case that it is symplectic. For symplectic G-action there
is a more refined procedure to produce a quotient which is symplectic (assuming it
is a manifold).
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Symplectic geometry, III

In this lecture we introduce the important construction of Hamiltonian reduc-
tion of a Hamiltonian action on a symplectic manifold.

10.1. HAMILTONIAN ACTIONS

Last time we built up towards the following definition.

Definition 10.1.1. A symplectic action ρ of G on M is Hamiltonian if there exists a
G-equivariant map

(223) µ : M→ g∗

such that

(1) For any a ∈ g the function

(224) Ha(x) = 〈µ(x), a〉
is a Hamiltonian function for the vector field ξa = Dρ(a).

(2) The assignment a 7→ Ha is a map of Lie algebras g→ C∞(M).

Example 10.1.2. Suppose that V is a vector space equipped with a nondegenerate
skew-symmetric bilinear form ω ∈ ∧2V∗. Thus (V, ω) is a symplectic vector space.
Suppose that G ⊂ Sp(V) acts on V in a way that preserves ω. Such an action is
always Hamiltonian. Indeed, define

(225) µ : V → g∗

by the rule

(226) 〈µ(v), a〉 = 1
2

ω(v, a · v), for all a ∈ g.

Here 〈−,−〉 denotes the canonical pairing between g and its dual.

Example 10.1.3. Suppose that N is a smooth manifold with a G-action. Then G
extends to a Hamiltonian action on T∗N with moment map defined by

(227) 〈µ(x, η), a〉g = 〈η, ξa(x)〉
where the right-hand side is the canonical pairing between one-forms and vector
fields.

Example 10.1.4. Let G be a linear algebraic group and P ⊂ G a closed subgroup.
Consider the variety X = G/P. There is a canonical isomorphism TxX = g/Adx · p
where p = LieP. Thus

(228) T∗X = {(x, λ) | λ ∈ Ad∗x · p⊥} ⊂ X× g∗

53
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where p⊥ = {λ ∈ g∗ | λ|p = 0} and Ad∗ : G × g∗ → g∗ denotes the coadjoint
action.

Consider the left action of G on X = G/P. This extends to a Hamiltonian action
of G on T∗X with moment map

(229) µ(x, λ) = λ.

A nice way to summarize the structure of the moment map is the following. We
have pointed out that the algebra of functions on a symplectic manifold is equipped
with a Poisson bracket. More generally, we can consider manifolds (which are not
necessarily symplectic) whose functions are equipped with a Poisson bracket—
such a manifold is a Poisson manifold. For any Lie algebra g its dual g∗, thought of
as a vector space, satisfies

(230) O(g∗) = Sym(g).

The Lie bracket [−,−] : g× g → g determines a Poisson bracket on Sym(g). Thus,
g∗ has the canonical structure of a Poisson manifold.

THEOREM 10.1.5. Let M be a symplectic manifold with a Hamiltonian G action. Then
the moment map µ : M→ g∗ is a map of Poisson manifolds.

10.2. HAMILTONIAN REDUCTION

Given a Hamiltonian G action on a symplectic manifold M, a natural question
to ask is in what sense the quotient M/G is symplectic. Even if M/G is a smooth
manifold it may not be the case that it is symplectic. For symplectic G-action there
is a more refined procedure to produce a quotient which is symplectic (assuming it
is a manifold). Let G be a real Lie group acting on a smooth manifold M.

THEOREM 10.2.1. Suppose that M is symplectic with a proper Hamiltonian G-action
with moment map µ : M→ g∗. Let p ∈ g∗ such that

• p is a regular value of µ, so µ−1(p) is a smooth submanifold of M.
• The stabilizer Gp ⊂ G of p acts freely on µ−1(p) so that µ−1(p)/Gp = µ−1(Op)/G

is a smooth manifold.

Then µ−1(p)/Gp has the canonical structure of a symplectic manifold compatible with the
symplectic structure on M.

As a corollary we see that if G acts freely on M then µ−1(0)/G has the canonical
structure of a smooth symplectic manifold.

Example 10.2.2. Suppose that G acts on a smooth manifold N in a free and proper
way and let µ : T∗N → g be the moment map from example 10.1.3. Then there is a
symplectomorphism

(231) T∗(N/G) ' µ−1(0)/G.

We now make the connection to the GIT quotient, which we recall makes sense
in the affine algebro-geometric setting. Suppose that G is a reductive algebraic
group acting on a nonsingular affine algebraic variety X. The cotangent bundle
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T∗X is an affine algebraic variety equipped with a Hamiltonian action by G. Thus,
there is an algebraic moment map µ : T∗X → g∗ and µ−1(0) is an affine algebraic
variety which is equipped with a G-action.

THEOREM 10.2.3. Suppose the G-action on the affine algebraic variety X is free so
that X/G = X // G is a non-singular affine algebraic variety. Then for any G-invariant
p ∈ g∗ the space µ−1(p)/G is symplectic and there is a canonical symplectomorphism

(232) T∗(X/G) ' µ−1(0)/G.

In the above theorem we assume, importantly, that the action is free so that the
GIT quotient agrees with the set-theoretic quotient. If the action is not free then
generally speaking X // G and µ−1(0)/G are singular algebraic algebraic varieties.
Nevertheless, in general µ−1(0) ⊂ X is an affine algebraic variety and we can con-
template the GIT quotient

(233) M0
def
= µ−1(0) // G.

More generally, for any character χ : G → C× we have the twisted GIT quotient

(234) Mχ
def
= µ−1(0) //χ G.

By definition there is a proper map π : Mχ →M0.

THEOREM 10.2.4. Let X be a smooth affine algebraic variety and let G be a reductive
algebra group acting on X. Then

(1) For any character χ the variety Mχ is Poisson. The morphism π : Mχ → M0 is
Poisson.

(2) Let Xs be the χ-stable points so that Xs // X //χ G is a smooth subvariety. Also

(235) Ms
χ

def
= (µ−1(0)s) // G ⊂Mχ

is smooth. Then Ms
χ is symplectic and contains T∗(Xs // G).
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The Springer resolution

Today we will consider an example of a symplectic resolution of singularities.
Recall that we are in the following situation. We have a Hamiltonian action of
a reductive group G on a symplectic variety X. We can consider the following
flavors of Hamiltonian reduction of the Hamiltonian G action on the cotangent
bundle T∗X:

(236) M0 = µ−1(0) // G

where µ : X → g∗ is the moment map and its twisted version

(237) Mχ = µ−1(0) //χ G

where χ : G → C× is a character. There is a canonical map

(238) π : Mχ →M0.

By the result we stated last time we see that when Mχ is non-singular then this map
is a resolution of singularities with the additional conditions that

• Mχ is symplectic and
• M0 is Poisson and the map π is a Poisson map.

We call such a resolution of singularities a symplectic resolution of singularities.

11.1. A REMINDER OF THE A1 CASE

Consider X = A2 with its standard G = C× action by scaling. Then C× acts on
the symplectic variety

(239) T∗X = {(i, j) | i ∈ (C2)∗, j ∈ C2}

in a Hamiltonian way with moment map µ(i, j) = ij.

We have seen that the affine GIT reduction of µ−1(0) by C× is the following
quadric

(240) M0
def
= µ−1(0) // C× ' Q = {(a, b, c) | a2 + bc = 0}

Also, for χ(λ) = λ we have seen that the twisted GIT reduction is

(241) Mχ = µ−1(0) //χ C× ' T∗P1.

Furthermore, we have the resolution of singularities

(242) π : T∗P1 → Q.
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Of course, T∗P1 is naturally a symplectic manifold. There is also a Poisson
structure on Q defined by

(243) {b, c} = 2a, {a, b} = b, {a, c} = −c.

Each of these structures is compatible with the standard symplectic structure on T∗A2,
and furthermore the map π is a Poisson morphism.

11.2. THE SPRINGER RESOLUTION

We consider a generalization of this example. In the remainder of this section
we take G = SL(n, C), but any semi-simple reductive group will work. Consider
the nilpotent cone defined by

(244) N
def
= {a ∈ g | aN = 0, for some N} ⊂ g.

Then N is an affine algebraic variety and it is equipped with a C× action a 7→ λa
(this is why it is called a ‘cone’). When G = SL(2, C) then we have N = Q from the
previous example. In general, N is a singular affine variety with cone point 0 ∈ N.

Consider a maximal torus T ⊂ G with Lie algebra h. Let B ⊂ G be a Borel
subgroup containing T. In the case G = SL(n, C) we can take B to be the subgroup
of upper triangular matrices. Define the flag variety of G to be

(245) F
def
= G/B

It is isomorphic to the variety of all Borel subgroups of G. In the case G = SL(n, C)
this is isomorphic to the set of full flags of n-dimensional space

(246) 0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn ' Cn

where dim Vi = i. We will denote such a flag by V• ∈ F.

Consider the special case of G = SL(n, C). Let

(247) Ñ
def
= {(V•, y) | yVi ⊂ Vi−1} ⊂ F× sl(n, C).

Notice that the condition yVi ⊂ Vi−1 implies that y is nilpotent, thus

(248) Ñ ⊂ F×N.

If we think about F instead as the space of all Borel subalgebras then Ñ is the set
of pairs (b, y) such that y ∈ b. The projection Ñ → F is a vector bundle with fiber
[b, b] = n.

Proposition 11.2.1. There is an isomorphism Ñ ' T∗F. In particular, Ñ carries a sym-
plectic structure. Further, the natural left action of SL(n, C) on Ñ is Hamiltonian with
moment map

(249) µ : Ñ→ sl(n, C)

defined by µ(V, y) = y.

PROOF. Fix a basis {e1, . . . , en} on Cn and let V0
• denote the standard flag given

by

(250) V0
i = span{e1, . . . , ei}.
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Then the Borel subgroup B is

(251) B = {g ∈ SL(n, C) | g ·V0
i ⊂ Vi}.

Now, from example 10.1.4 we have an identification

(252) T∗F = {(V, y) | tr(ay) = 0, for any a with a ·Vi ⊂ Vi} ⊂ F× sl(n, C).

This implies that Ñ ' T∗F as desired. �

Since the image of the moment map µ is contained in the nilpotent elements we
see that it defines a map

(253) µ : Ñ→ N.

It turns out that this is a symplectic resolution of singularities. For more details we
refer to [CG10].

11.3. SPRINGER RESOLUTION IN GENERAL

We briefly sketch how this construction is generalized to the case of an arbitrary
semisimple group G.

Lemma 11.3.1. There is an isomorphism

(254) T(F) ' G×B g/b

PROOF. Consider the trivial vector bundle on the G/B with fiber g. There is a
surjective map of vector bundles

(255) L : G/B× g→ T(G/B)

which sends a pair (gB, x) to the pair (gB, ξx(gB)) where ξx is the vector field on
G/B determined by the infinitesimal left action of x ∈ g. The kernel of this map
is the vector bundle whose fiber over gB is the Lie algebra of the stabilizer of gB;
which is the Borel subalgebra Adgb. There is an isomorphism

(256) G×B b→ ker L

sending [g, x] 7→ (gB, gxg−1). Thus we have an isomorphism of vector bundles

(257) T(G/B) ' (G/B× g)/(G×B b) ' G×B g/b

as desired. �

As a consequence we have

(258) T∗(G/B) ' G×B (g/b)∗.

Since G is semisimple we identify this with

(259) T∗(G/B) ' G×B b⊥,

where g = b⊕ b⊥ is the orthogonal decomposition with respect to the Killing form.
Furthermore, there is a direct sum decomposition b = h⊕ n where n ⊂ b is the
subalgebra of nilpotent elements in b. One can show that n ⊂ b⊥, so that T∗(G/
B) ' G×B n.
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Now, G acts on G/B so it automatically acts on T∗(G/B) in a Hamiltonian way.
Explicitly, the moment map

(260) µ : G×B n→ g∗ ' g

is µ([g, x]) = gxg−1. Again, it is immediate to see that this map lands in the set of
nilpotent elements N ⊂ g, so it defines a map

(261) µ : T∗(G/B)→ N.

Again, this is a symplectic resolution of singularities.

11.4. KÄHLER QUOTIENTS

We return to the relationship between the quotient of a vector space by a real
compact Lie group and the GIT reduction by the corresponding complex reductive
group. Let K be a compact real Lie group and let G be its complex form. We assume
that K ⊂ G and that the complexification K(C) ' G. Notice that at the level of Lie
algebras we have g = k⊗R C.

Let VR be a real vector space equipped with a positive definite inner product
g and a compatible complex structure I. When we chose to view VR as a complex
vector space via I we denote it by V. This equips VR with the structure of a Kähler
manifold. Let (−,−) be the corresponding Hermitian inner product and let ω =
Im(−,−) ∈ ∧2V∗R be the symplectic form. Suppose that K ⊂ U(VR) acts unitarily
on V and hence its complexification G ⊂ GL(V, C) acts through complex linear
transformations.

By assumption, the action of K is symplectic with respect to ω. Thus we have a
moment map

(262) µR : VR → k∗

defined explicitly by the rule that

(263) 〈µR(v), a〉 = 1
2

ω(x, a · x).

But, since ω is the imaginary part of the Hermitian inner product, we can write the
moment map as 〈µR(v), a〉 = i

2 (a · x, x).

In this situation we can contemplate two quotients, namely µ−1
R (0)/K and V //

G. (Recall that generally the G-orbit of an arbitrary element v ∈ V will not be G-
closed, so there is no expected relationship between V/K and V // G.) The Kempf–
Ness theorem states that these quotients can naturally be identified.

THEOREM 11.4.1 ([KN79]). The G-orbit of any x ∈ µ−1
R (0) in V is closed and fur-

thermore there is an isomorphism

(264) µ−1
R (0)/K '−→ V // G

intertwining the complex structures.

We will not prove this theorem, but let us unpack the last statement. By defini-
tion, the space µ−1(0)/K is the real Hamiltonian reduction of V by the K-action. It
inherits a Kähler structure from that on V. On the other hand, the right hand side
V // G is the affine GIT quotient, which is a complex affine variety by definition.
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The Hilbert scheme as a reduction

Recall the following example. Equip V = End(Cn) with a Kähler structure
induced from the standard one on Cn. The Hermitian inner product is simply
(x, y) = tr(xy†) and the symplectic form is ω(x, y) = Im(x, y). Consider the adjoint
action through unitary matrices

(265) End(Cn) 3 x 7→ g−1xg, g ∈ U(n).

The corresponding moment map is simply

(266) µR(x) =
i
2
[x, x†].

The Kempf–Ness theorem gives a natural isomorphism

(267) µ−1(0)/U(n) ' End(Cn) // GL(n, C).

We have seen that the right hand side is isomorphic to Cn; the closed orbits are
the diagonalizable matrices and Cn consists of the sets of eigenvalues. The right
hand side is the quotient by U(n) of matrices satisfying [x, x†] = 0. Any normal
matrix can be diagonalized by a unitary matrix. This is an explicit example of the
Kempf–Ness theorem.

12.1. THE SYMMETRIC PRODUCT

Let V, W be complex vector spaces of dimension n and 1 respectively. Let

(268) Hn,1
def
= End(V)⊕ End(V)⊕Hom(W, V)⊕Hom(V, W).

There is a natural GL(V, C) action on Hn,1 defined by

(269) (B1, B2, i, j) 7→ (g−1B1g, g−1B2g, g−1i, jg), g ∈ GL(V, C).

Notice that

(270) Hn,1 = T∗ End(V)⊕ T∗Hom(W, V).

In particular, Hn,1 is naturally a complex symplectic vector space. The GL(V, C) ac-
tion is Hamiltonian with respect to this symplectic structure and the (holomorphic)
moment map

(271) µC : Hn,1 → gl(V)∗ ' gl(V)

is

(272) µC(B1, B2, i.j) = [B1, B2] + ij.
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By our work in previous lectures we have identified the nth symmetric product of
C2 with the GIT Hamiltonian reduction

(273) SnC2 ' µ−1
C (0) // GL(V, C).

Via this description it makes it manifest that SnCn is equipped with a Poisson struc-
ture. (Describe it explicitly.)

Equip V, W with Hermitian inner products so that the vector space is equipped
with an induced Hermitian inner product. We have a natural action of g ∈ U(V) '
U(n) on Hn,1 defined by restriction of the action (269). The real moment map for
this unitary action is

(274) µ1(B1, B2, i, j) =
i
2

(
[B1, B†

1 ] + [B2, B†
2 ] + ii† − j† j

)
.

Thus, by the Kempf–Ness theorem we have another description of SnC2

(275) µ−1
C (0) // GL(n, C) ' SnC2 '

(
µ−1

1 (0) ∩ µ−1
C (0)

)
/U(n).

12.2. HILBERT SCHEME

Consider the complex vector space Hn,1 equipped with its GL(n, C) action. De-
fine the character χ : GL(n, C)→ C× by

(276) χ(g) = (det g)l

where l is an arbitrary positive integer.

Proposition 12.2.1. There is an isomorphism

(277) Hilbn(C2) ' µ−1
C (0) //χ GL(n).

This result follows from the following lemma asserting that the familiar sta-
bility condition that we originally used in the description of the Hilbert scheme
translates to the statement that orbits are closed in the semi-stable locus.

Lemma 12.2.2. The tuple (B1, B2, i, j) satisfies the stability condition if and only if it is
χ-semi stable.

PROOF. Recall that the stability condition says that there is no subspace S ⊂ V
such that

• S is invariant for B1, B2.
• im(i) ⊂ S.

By way of contradiction let’s assume that there exists such an S and that

(278) G · (Bα, i, j; z) ⊂ Hn,1 × C

is closed.

As we have done before, let’s take a complementary subspace S⊥ such that
V = S⊕ S⊥. Then in this form the matrices Bα take the form

(279) Bα =

(
? ?
0 ?

)
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And i is a column vector of the form i =
(
? 0

)t. Let

(280) g(t) def
=

(
1S 0
0 t−11S⊥

)
.

Then

(281) g(t)Bαg(t)−1 =

(
? t?
0 ?

)
, g(t)i = i.

On the other hand (det g(t))−lz = tl·dim S⊥z → 0 as t → 0 since dim S⊥ > 0 by
assumption. This contradicts the fact that G · (Bα, i, j; z) is closed.

Next suppose that the stability condition holds. By contradiction suppose that
G · (Bα, i, j; z) is not closed.

�

To get a similar description of the Hilbert scheme as a Kähler quotient we need
to discuss a small generalization of the Kempf–Ness theorem where the affine GIT
quotient is replaced by the twisted GIT quotient.

Suppose K is a compact Lie group with complexification G both acting in an
appropriate way on a Hermitian vector space V. Let χ : G → C× be a character
which restricts to a character χR : K → U(1). We identify u(1) ' iR. Then, the
variant of the Kempf–Ness theorem is an isomorphism

(282) µ−1
R (i dχR)/K ' V //χ G.

Applied to the Hilbert scheme example we then have a sequence of isomor-
phisms

(283) µ−1
C (0) //χ GL(n, C) ' Hilbn(C2) '

(
µ−1

1 (idχR) ∩ µ−1
C (0)

)
/U(n).

12.3. HYPERKÄHLER QUOTIENTS

In this section we will survey the result that the Hilbert scheme on C2, and
more generally the moduli of torsion-free sheaves, can be given the structure of a
hyperkähler manifold.

Recall that a Kähler manifold is a Riemannian manifold of dimension 2n with a
compatible almost complex structure I which is integrable and such that the Kähler
two-form ω is d-closed. This is equivalent to asking that the complex structure I be
parallel with respect to the Levi-Civita connection ∇I = 0. For a Kähler manifold,
the holonomy group of∇ is contained in U(n). In other words, the SO(2n) bundle
of frames admits a reduction of structure to U(n).

A hyperKähler manifold is a smooth Riemannian manifold (M, g) with a triple
of almost complex structures I, J, K satisfying

(1) Each I, J, K preserve the metric g.
(2) I, J, K satisfy the quaternionic relations I2 = J2 = K2 = I JK = −1.
(3) I, J, K are parallel with respect to the Levi-Civita connection ∇I = ∇J =
∇K = 0.
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These conditions imply that the holonomy group of ∇ is contained in the real
symplectic group Sp(n) ⊂ SO(4n). Each pair (g, I), (g, J), (g, K) defines a Kähler
structure with Kähler forms we denote by ωI , ωJ , ωK. If we fix the complex struc-
ture I then the combination

(284) ωC
def
= ωJ + iωK

is holomorphic. Meaning ωC is Hodge type (2, 0) and is ∂I-closed.

Suppose that K is a compact real Lie group acting on a hyperKähler manifold
X in a way that preserves I, J, K, g.

Definition 12.3.1. A map

(285) µ : X → R3 ⊗ k∗

is a hyperKähler moment map if

(1) µ is K-equivariant.
(2) If µ = (µI , µJ , µK) then

(286) 〈dµI(v), a〉 = ωI(ξa, v)

for any v ∈ TX, a ∈ k and similarly for J, K.

Suppose that X is equipped with such a moment map.

THEOREM 12.3.2 ([Hitchin]). Suppose ζ1, ζ2, ζ3 ∈ k∗ are Ad-invariant elements.
Then if ζ = (ζ1, ζ2, ζ3) the set µ−1(ζ) ⊂ X is K-invariant.

If we assume that the K-action on µ−1(ζ) is free then the quotient space µ−1(ζ)/K is
a smooth manifold equipped with a hyperKähler structure compatible with the one on X.

The resulting space µ−1(ζ)/K is called the hyperKähler quotient and is some-
times denoted

(287) X///K def
= µ−1(ζ)/K.
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Hyperkähler reduction

Last time we introduced the notion of hyperkähler reduction. Given a hyper-
kähler manifold X and a hyperkähler moment map µ : X → Lie(K)∗ ⊗ R3 the hy-
perkähler reduction is

(288) X///K = µ−1(ζ)/K

where ζ is a K-invariant element. For this quotient to be smooth hyperkähler man-
ifold we need to assume that the K-action on µ−1(ζ) is free.

13.1. THE HILBERT SCHEME AS A HYPERKÄHLER QUOTIENT

Let

(289) Hn,1
def
= End(V)⊕ End(V)⊕Hom(W, V)⊕Hom(V, W).

be the space of tuples (Bα, i, j) as usual where V, W are hermitian vector spaces of
dimension n and 1 respectively.

Lemma 13.1.1. Suppose that H is any hermitian vector space. Suppose that J : H → H
is a real endomorphism satisfying

• J is anti-linear meaning J(λv) = λJ(v).
• J2 = −1.

Then J endows H with the structure of a quaternionic vector space.

PROOF. Let I : H → H, v 7→ iv be the complex structure underlying V. Define
K : H → H by K = I J. In other words, K(v) = iJ(v). Clearly KK(v) = iJ(iJ(v)) =
J2(v) = −v so that K2 = −1. Also JK(v) = J(iJ(v)) = −iJ2(v) = iv so that
JK = I = −KJ. The remaining relation KI = J = −IK is similar to check. �

As a corollary we see that Hn,1 is equipped with a quaternionic structure.

Corollary 13.1.2. The anti-linear endomorphism J : Hn,1 → Hn,1 defined by

(290) J(B1, B2, i, j) = (B†
2 ,−B†

1 , j†,−i†)

endows Hn,1 with the structure of a quaternionic vector space.

Recall the holomorphic moment map

(291) µC : Hn,1 → gl(V) = gl(n)

65
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defined by µC(Bα, i, j) = [B1, B2] + ij. Decompose this into its real and imaginary
parts

(292) µC = µJ + iµK

where we view gl(n, C) as the complexification of u(n). Also set µI = µ1 so that

(293) µI(B1, B2, i, j) =
i
2

(
[B1, B†

1 ] + [B2, B†
2 ] + ii† − j† j

)
.

It is easy to see that µ = (µI , µJ , µK) is a hyperkähler moment map for the U(n)
action on Hn,1. The following is an immediate consequence of the theorem from
last class.

THEOREM 13.1.3. Let χ(g) = (det g)l be the real character used in the last class.
Then the U(n) action on

(294) ζχ = µ−1(idχ, 0, 0)

is free. In particular the Hilbert scheme of n points in A2

(295) Hilbn(A2) ' Hn,1///U(n) = µ−1(ζχ)/U(n)

is a hyperkähler quotient.

Since µ = (µI , µJ , µK) we can rewrite this as

(296) Hilbn(A2) ' µI(−idχ) ∩ µJ(0) ∩ µK(0)/U(n).

13.2. CALOGERO–MOSER SPACES

For any ζ ∈ R3 ⊗ u(n) we can consider the quotient

(297) Hn,1///ζU(n) def
= µ−1(ζχ)/U(n).

If we take ζ = 0 we recover the symmetric product SnA2. As long as ζ 6= 0 the U(n)
action on µ−1(ζχ) is free so that Hn,1///ζU(n) is a smooth hyperkähler manifold.

For ζ 6= 0 the spaces Hn,1///ζU(n) are related through hyperkähler rotation.
Precisely, there exists a matrix R ∈ SO(3) which acts on the hyperkähler structure
as

(298)

 I′
J′
K′

 = R

 I
J
K


which satisfies

(299) Rζ =

|ζ|0
0

 .

This transformation is compatible with the hyperkähler quotient and so descends
to an isometry

(300) R : Hn,1///ζU(n) '−→ Hilbn(A2).
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So, as ζ 6= 0 varies all of the spaces Hn,1///ζU(n) are isometric. But, they are not
the same as complex manifolds; indeed the hyperkähler rotation moves around the
complex structures. Choose an identification

(301) R3 = R⊕ C

and decompose ζ = (ζR, ζC) and µ = (µR, µC). Then, following (296) we can write

(302) Hilbn(A2) = µ−1
R (1) ∩ µ−1

C (0)/U(n).

One can show that as long as ζC 6= 0 that

• µ−1
C (ζC) is non-singular.

• Every GL(n, C)-orbit in µ−1
C (ζC) is closed.

• The stabilizer of every point in µ−1(ζ) is trivial.

For such ζ = (ζR, ζC) we see that µ−1
C (ζC)/GL(n, C) agrees with the affine GIT

quotient µ−1
C (ζ) // GL(n, C). Furthermore, by Kempf–Ness we see that

(303) Hn,1 //ζ U(n) = µ−1(ζ)/U(n) ' µ−1
C (ζC) // GL(n, C).

Combining these facts with the isometry above, we see that Hilbn(A2) is dif-
feomorphic to an affine algebraic manifold. More explicitly, the Calogero–Moser
space is defined to be

(304) CMn
def
= µ−1

R (0) ∩ µ−1
C (−1)/U(n).

Thus, CMn is the hyperkähler reduction Hn,1///ζU(n) where ζ = (0,−1) and Hilbn(A2)
is the hyperkähler reduction Hn,1///ζU(n) where ζ = (1, 0).

The hyperkähler rotation of ζ = (0,−1) into ζ = (1, 0) corresponds to multi-
plication by the quaternion (i + k)/

√
2. In other words, the real endomorphism

(305)
1√
2
(i + k) : Hn,1 → Hn,1

is U(n) equivariant and induces a real isometry

(306) CMn
'−→ Hilbn(A2).

The Calogero–Moser space CMn can thus be understood as the holomorphic
symplectic reduction

(307) µ−1
C (−1)/GL(n, C) = {(B1, B2, i, j) | [B1, B2] + ij = 1}/GL(n, C).

There are special Hamiltonian flows on the space CMn induced by the Hamiltoni-
ans

(308) Hk = (−1)k−1 tr Bk
2 ∈ C[Hn,1].

The functions Hk are GL(n, C)-invariant and hence determine Hamiltonians

(309) Hk ∈ O(CMn), k = 1, . . . , n.

These functions satisfy

(310) {Hi, Hj} = 0, ∀i, j

and comprise the famous Calogero–Moser integrable system.
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