LECTURE 3

Geometric invariant theory, I

Studying objects up to a notion of equivalence is an integral concept in any area of mathematics. The appearance of quotients is thus inevitable. In this lecture we begin studying quotients which are particularly well-behaved in the algebrogeometric setting.

3.1. QUOTIENTS IN GEOMETRY AND TOPOLOGY

We will review some classic results about group actions on topological spaces and smooth manifolds.

If *G* is a group acting on a topological space *M* then we can consider the settheoretic quotient M/G which is, by definition, the set of *G*-orbits. This set is equipped with a natural topology for which the map $M \rightarrow M/G$ is continuous. But, in general, this topological space may not even be Hausdorff. To get a nicer behaved quotient we look at a more refined situation.

Suppose that *G* is a real Lie group acting on a smooth manifold *M*. We call this action *proper* if the map

$$G \times M \to M \times M$$
$$(g,m) \mapsto (m,g \cdot m)$$

is proper; meaning the preimage of any compact set is compact. Equivalently, this is the condition that for any compact sets $K, K' \subset M$ that the subset $\{g \in G \mid gK \cap K'\} \subset G$ is compact.

Denote the stabilizer of a point $x \in M$ by

(1)
$$G_x \stackrel{\text{def}}{=} \{g \in G \mid g \cdot x = x\} \subset G.$$

Also, denote the orbit of a point $x \in M$ by

(2)
$$\mathbb{O}_x \stackrel{\text{def}}{=} \{ y \in M \mid y = g \cdot x \} \subset M.$$

1 (

We have the following easy observations:

- if *G* is compact this condition is automatically true.
- any *G*-orbit of a proper action is a closed subset of *M*.

A fundamental result pertaining to quotients spaces in geometry and topology is the following so-called "slice theorem".

THEOREM 3.1.1. Suppose G acts properly on a smooth manifold M. For every $x \in M$ there exists a locally closed submanifold $S_x \subset M$ (called a **slice**) containing x which is

invariant under the action of G_x . Furthermore, there exists an open neighborhood $U \supset \mathbb{O}_x$ such that the natural map

$$(3) G \times_{G_r} S \xrightarrow{\simeq} U$$

is a homeomorphism.

In particular, \mathbb{O}_x is a smooth closed submanifold of M.

As a corollary one obtains the following.

THEOREM 3.1.2. Suppose that G acts freely and properly on a smooth manifold M. Then the set of orbits M/G has the structure of smooth manifold with the property that the quotient map

 $(4) M \to M/G$

is a smooth principal G-bundle.

So far these theorems take place in the smooth or topological setting. We now move towards quotients in algebraic geometry.

3.2. Algebraic groups

One has the following hierarchy

(5) $\{\text{groups}\} \supset \{\text{topological groups}\} \supset \{\text{real Lie groups}\}$

 \supset {complex Lie groups} \supset {algebraic groups}

and for actions $G \times X \to X$ we have

(6) {action} \supset {continuous action} \supset {smooth action}

 \supset {holomorphic action} \supset {algebraic action}.

An important structure in any of these contexts is *reducibility*. Suppose that we are in a linear situation. A representation (or a linear action) of a group G on a vector space V is called *completely reducible* if it is a direct sum of irreducible representations.

If G is a compact topological group acting linearly on a (real or complex) vector space V then the action is completely reducible. Thus, compactness is enough to guarantee complete irreducibility. But, sometimes we do not want to assume compactness.

Definition 3.2.1. A complex Lie group *G* is said to be *reductive* if

- *G* has finitely many connected components.
- *G* contains a compact real Lie subgroup *K* such that $\mathbf{C} \otimes_{\mathbf{R}} T_e K \simeq T_e G$.

The compact group *K* is called the reductive form of *G*.

Example 3.2.2. A basic example of a reductive group is the group $GL(n, \mathbb{C})$ of invertible complex-valued $n \times n$ matrices. In this case the real subgroup U(n) can be taken to be the group of unitary $n \times n$ matrices.

2

THEOREM 3.2.3. A reductive linear group action on a complex vector space is completely reducible.

Let's turn to the nice algebraic context that we will work in for the time being.

Definition 3.2.4. A *linear algebra group G* is a subgroup of GL(V), where *V* is some complex vector space, which is cut out by a finite collection of polynomials. That is, there exists $p_1, \ldots, p_k \in \mathbb{C}[\text{End}(V)]$ such that

(7)
$$G = \{g \in GL(V) \mid p_i(g) = 0, \text{ for all } i\}.$$

Example 3.2.5. The groups $GL(n, \mathbb{C})$, $SL(n, \mathbb{C})$, $O(n, \mathbb{C})$, $SO(n, \mathbb{C})$, $Sp(n, \mathbb{C})$ are all linear algebra groups. The group U(n) is not a complex linear algebraic group, though it is a real algebraic group.

There is an a priori

Definition 3.2.6. An *affine algebraic group G* is an affine algebraic variety together with structure maps $\mu: G \times G \to G$, $(-)^{-1}: G \to G$, and an element $e \in G$ such that the usual group axioms hold.

An *algebraic action* of an algebraic group on an affine algebraic variety *X* is a map of algebraic varieties $G \times X \rightarrow X$ satisfying the axioms of an action.

Proposition 3.2.7. *Any affine algebraic group is isomorphic (as an affine algebraic group) to a linear algebraic group.*

We say an algebraic group G is reductive if it is reductive as a complex Lie group (in the sense above). Here is the main theorem about reductive group actions.

THEOREM 3.2.8. Let G be a reductive algebraic group acting on an affine variety X. Then

- **C**[*X*]^{*G*} *is a finitely generated* **C***-algebra.*
- If $W, Z \subset X$ are closed, *G*-invariant, and disjoint then there exists a *G*-invariant polynomial function $p \in \mathbb{C}[X]$ such that $p|_W \equiv 0$ and $p|_Z \equiv 1$.

3.3. QUOTIENTS IN AFFINE ALGEBRAIC GEOMETRY

For the next few lectures we will be working in the context where G is an algebraic group acting on an affine algebraic variety X (all defined over **C**). We will consider X as a topological space using the Zariski topology.

Some key results of invariant theory which we will not prove include the following.

- Every *G*-orbit in X is a nonsingular algebraic variety (which is not necessarily closed).
- For every orbit O, we can consider the closure O. The boundary O − O is a union of lower dimensional orbits.

In the last lecture we introduced the so-called *geometric invariant theory*, or simply *GIT*, quotient

(8)
$$X // G \stackrel{\text{def}}{=} \operatorname{Spec} \left(\mathbf{C}[X]^G \right).$$

By the first part of theorem 2.2.8 this is an affine algebraic variety. Also, there is a relationship between the set-theoretic quotient M/G and the GIT quotient. Indeed, given any orbit $\mathbb{O} \in X/G$ we can define the maximal ideal

(9)
$$J_{\mathcal{O}} \stackrel{\text{def}}{=} \{ f \in \mathbf{C}[X] \mid f|_{\mathcal{O}} = 0 \}.$$

The assignment $\mathbb{O} \mapsto J_{\mathbb{O}}$ defines a continuous map

where X // G is equipped with the Zariski topology.

THEOREM 3.3.1. For X affine and reductive this map is surjective. Moreover two orbits \mathbb{O}, \mathbb{O}' determine the same point in X // G if and only if the closures of the orbits are disjoint $\overline{\mathbb{O}} \cap \overline{\mathbb{O}}' \neq \emptyset$.

A related, and even more explicit description of the GIT quotient is granted by the following.

THEOREM 3.3.2. There is a homeomorphism of topological spaces

(11) $X // G \simeq \{ closed orbits in M \}$

which sends $[x] \mapsto$ the unique closed orbit contained in $\overline{\mathbb{O}}_x$.

PROOF. It suffices to show that the closure of any orbit contains a unique closed orbit. For the existence of a closed orbit, recall that boundary of an orbit $\overline{O} - O$ is a union of orbits of lower dimension. For uniqueness one relies on Theorem 2.2.8.

As a corollary of this we see that if all orbits are closed then the GIT quotient agrees with the set-theoretic one. Here is a simple example where there is a non-closed orbit.

Example 3.3.3. Suppose that $X = \mathbf{A}^2$ and consider the scaling action of $G = \mathbf{C}^{\times}$

(12)
$$\lambda \cdot (z_1, z_2) = (\lambda z_1, \lambda z_2).$$

Then as a topological space one has

(13)
$$\mathbf{A}^2/\mathbf{C}^{\times} \simeq \mathbb{P}^1 \cup \{0\}.$$

(This is only as a set, $\mathbf{A}^2/\mathbf{C}^{\times}$ is not a manifold.) On the other hand, the only closed orbit is $\{0\} \subset \mathbf{A}^2$. Indeed, if $0 \neq x \in \mathbf{A}^2$ then $\mathbb{O}_x = \ell_x - \{0\}$ where ℓ_x is the line through *x* and 0. Thus

(14)
$$\mathbf{A}^2 /\!/ \mathbf{C}^{\times} \simeq \{0\}.$$

Notice that this is consistent with the fact $C[z_1, z_2]^{C^{\times}} = C$.

In the topological world, we obtain the best structure on the quotient when the *G*-action is free. It is in this case that the quotient is a smooth manifold (if we start with a smooth manifold) and the quotient map exhibits the original space as a principal bundle. There is an analog of this result in the algebro-geometric world.

To formulate we need to have an algebro-geometric version of a smooth principal bundle. If $x \in X$ is a point in an algebraic variety then let \hat{O}_x be the completed local ring at $x \in X$. If $x \in X$ is a non-singular point then this is just the ring of formal power series near x.

Example 3.3.4. Suppose that $X = \text{Spec}(\mathbf{C}[z_1, \dots, z_n]/(f))$ where f is some polynomial. Then $\hat{\mathbb{O}}_0$ is isomorphic to $\mathbf{C}[[z_1, \dots, z_n]]/(f)$.

A morphism of algebraic varieties $f: X \to Y$ is called *étale* if for every $x \in X$ the pullback map

(15)
$$f^* \colon \widehat{\mathcal{O}_{f(x)}} \to \widehat{\mathcal{O}_{g(x)}}$$

is an isomorphism.

For us, the analog of a principal *G*-bundle in algebraic geometry will be an étale *G*-bundle. A *G*-equivariant map $f: X \to Y$ is an étale *G*-bundle if for every $y \in Y$ there exists an open neighborhood $U \subset Y$ of y such that $X|_U \to U$ is étale equivalent to the trivial *G*-bundle $U \times G \to U$.

THEOREM 3.3.5 (Luna Slice). Suppose that X is a non-singular affine variety equipped with a free G-action where G is a reductive algebraic group. Then X // G = X/G is a non-singular variety and $X \rightarrow X$ // G is an étale G-bundle.

3.4. A FUNDAMENTAL EXAMPLE

We end this lecture with a very important example. Let

(16)
$$X = \operatorname{End}(\mathbf{C}^n) = \mathbf{A}^{n^2}$$

be the affine space of $n \times n$ matrices. Consider the adjoint action of $G = GL(n, \mathbb{C})$ on *X*.

Given a matrix $x \in X$ consider its characteristic polynomial

(17)
$$\det(x+t\mathbb{1}) = p_n(x) + tp_{n-1}(x) + \dots + t^{n-1}p_1(x) + t^n$$

where *t* is some indeterminate.

THEOREM 3.4.1. The polynomials $p_1, \ldots, p_n \in \mathbf{C}[X]$ are algebraically independent, $GL(n, \mathbf{C})$ -invariant, and generate $\mathbf{C}[\text{End}(\mathbf{C}^n)]^{GL(n, \mathbf{C})}$. In particular (18) $\operatorname{End}(\mathbf{C}^n) // GL(n, \mathbf{C}) \simeq \mathbf{A}^n$.

The proof of this theorem relies on the following fundamental lemma.

Lemma 3.4.2. Suppose that an algebraic group G acts on a variety X and suppose that $p_1, \ldots, p_n \in \mathbb{C}[X]$ are G-invariant polynomials. Further, suppose that $H \subset G$ is a subgroup which leaves invariant a subvariety $U \subset X$ with the properties:

(1) the polynomials $p_i|_U$ generate the ring $\mathbf{C}[U]^H$;

(2) the set $G \cdot U$ is dense in X.

Then the polynomials p_1, \ldots, p_n generate the ring $\mathbf{C}[X]^G$.

PROOF. Let *p* be a polynomial which is *G*-invariant. Then, by assumption,

(19)
$$p|_{U} = F(p_{1}|_{U}, \dots, p_{n}|_{U})$$

for some polynomial F. Define

(20)
$$q \stackrel{\text{def}}{=} p - F(p_1, \dots, p_n) \in \mathbf{C}[X]$$

By construction $q|_U \equiv 0$. Moreover, q is *G*-invariant so that $q|_{G \cdot U} \equiv 0$. By the second assumption we know that $q \equiv 0$.

Let's turn to the proof of theorem 2.4.1

PROOF OF THEOREM 2.4.1. Fix a basis $\{e_i\}$ of \mathbb{C}^n . We apply the lemma to the case where $U \subset X = \text{End}(\mathbb{C}^n)$ is the subspace of diagonal matrices and $H = S_n$ is the permutation group which permutes the e_1, \ldots, e_n . In particular, a permutation $\sigma \in S_n$ acts on U by the rule

(21)
$$\sigma \cdot \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_{\sigma(1)} & & \\ & \ddots & \\ & & \lambda_{\sigma(n)} \end{pmatrix}$$

We will first show that $\overline{G \cdot U} = X$. Consider the continuous map $\pi \colon X \to \mathbb{C}^n$ which sends a matrix x to the coefficients $p_1(x), \ldots, p_n(x)$ of its characteristic polynomial. This map can be shown to be surjective. The subset $V \subset \mathbb{C}^n$ consisting of the coefficients of monic polynomials with distinct roots is an open set. Thus, $\pi^{-1}(V) \subset X$ is an open set which consists of matrices with distinct eigenvalues. Finally, we note that any matrix which has distinct eigenvalues can be diagonalized.

Next, we must show that $p_1|_U, ..., p_n|_U$ generate $C[U]^{S_n}$. Let $x \in X$ be the matrix diag $(\lambda_1, ..., \lambda_n)$. Then the characteristic polynomial of x is

(22)
$$\det(x+t\mathbb{1}) = \sigma_n(\lambda) + \dots + \sigma_1(\lambda)t^{n-1} + t^n$$

where σ_i is the *i*th symmetric polynomial. We have already recalled in the last lecture that the elementary symmetric polynomials generate the ring of all symmetric functions. This completes the proof.