
LECTURE 4

An explicit description of the Hilbert scheme

Today we will prove an explicit characterization of the Hilbert scheme. Let

(1) Hn ⊂ Hom(Cn, Cn)⊕2 ⊕ Cn ⊕ (Cn)∗

is the set of tuples (X, Y, i, j) which satisfy

(2) [X, Y]− ij = 0.

Also define

(3) Hs
n ⊂ Hn

to be the subspace where

• the vector i(1) generates Cn under the action by X, Y. This means that
given v ∈ Cn there exists integers k, l ≥ 0 such that v = XkYli(1).

This last condition is called a stability condition. We will see many versions of it
in future lectures.

THEOREM 4.0.1. For any n the Hilbert scheme Hilbn(A2) is a nonsingular algebraic
variety of dimension 2n. Moreover, there is an isomorphism of algebraic varieties

(4) Hilbn(A2) ' Hs
n // GL(n, C).

There is a similar description of the symmetric product of A2.

THEOREM 4.0.2. There is an isomorphism of algebraic varieties

(5) SnA2 ' Hn // GL(n, C).

Moreover, the natural map Hs
n ↪→ Hn induces the Hilbert–Chow morphism

(6) πHC : Hilbn(A2)→ SnA2.

4.1. A DESCRIPTION OF THE SYMMETRIC PRODUCT

We will begin with the description of the symmetric product which means we
will momentarily forget about the stability condition. First, let’s carefully describe
how GL(n, C) acts on Hn. The action is a restriction of the most natural one where
GL(n; C) acts on endomorphisms of Cn by conjugation and acts on Cn (respectively
(Cn)∗) in the defining (respectively antidefining) way. Explicitly, for g an invertible
n× n matrix and (X, Y, i) ∈ H′n the action is

(7) g · (X, Y, i, j) def
=
(

gXg−1, gYg−1, gi, jg−1
)

.

The following lemma is a direct calculation and can be found in [Nak99, §2].
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Lemma 4.1.1. Suppose [X, Y] + ij = 0 as above. Let S ⊂ Cn be the subset

(8) ∑(Xn1Ym1 · · ·XnkYmk)i(C).

Then j|S ≡ 0.

Suppose that

(9) O
def
= GL(n, C) · (X, Y, i, j)

is a closed orbit. Using S ⊂ Cn as in the lemma, we can decompose

(10) Cn = S⊕ S⊥.

With respect to this decomposition the matrices (X, Y, i, j) have the form

(11) X, Y =

(
? ?
0 ?

)
, i =

(
?
0

)
, j =

(
0 ?

)
.

By closedness we can further assume that

(12) X, Y =

(
? 0
0 ?

)
, i =

(
0
0

)
, j =

(
0 0

)
.

Thus, the condition [X, Y] + ij = 0 simply becomes [X, Y] = 0. Choose a basis
so that X, Y are both upper triangular. Then, by the closedness assumption we can
assume that X, Y are diagonalizable. The equivalence with SnA2 associates a closed
orbit to the simultaneous eigenvalues of the matrices X, Y.

Remark 4.1.2. The above argument can be modified to give a short proof that
End(Cn) // GL(n, C) ' An. Indeed, every matrix admits a basis for which it is
upper triangular. If we assume a matrix lies in a closed orbit, then we can also
assume it is diagonalizable. The equivalence then sends a closed GL(n, C)-orbit to
its n-tuple of eigenvalues.

4.2. RELATING CLOSED POINTS

Before turning to the proof of theorem 4.0.1, we will give a heuristic argument
for the result. First, it turns out that we can simplify the description of Hn.

Lemma 4.2.1. Suppose that (X, Y, i, j) ∈ Hs
n. Then j = 0.

Let H̃s
n be the subspace consisting of (X, Y, i) with the property that [X, Y] = 0

and i generates Cn under the action by X, Y. Then as a corollary of this lemma we
have GL(n; C)-equivariant isomorphism

(13) H̃s
n ' Hs

n.

Let’s see how the data of a triple (X, Y, i) ∈ H̃s
n gives rise to a closed point in

Hilbn(A2). Notice that a closed point in Hilbn(A2) is, by definition, an ideal I in
C[z1, z2] such that C[z1, z2]/I is an n-dimensional vector space. Define the linear
map

(14) φ(X,Y,i) : C[z1, z2]→ Cn
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by the formula φ(X,Y,i)( f ) = f (X, Y)i(1). Since im φ is invariant under the action
of X, Y and contains im i we see that φ is surjective by the stability condition. Thus
I = ker φ is an ideal in C[z1, z2] and dimC(C[z1, z2]/I) = n.

Next, suppose I is an ideal of codimension n and let V = C[z1, z2]/I. Then we
have operators X = z1, Y = z2 and i : C → V defined by i(1) = 1 mod I. It is
automatic that [X, Y] = 0 and that the stability condition holds.

It is not hard to check that these two operations are mutually inverse to one
another, which thus gives an isomorphism of sets between H̃s

n/GL(n, C) and codi-
mension n ideals in C[z1, z2].

4.3. PROOF OF THE THEOREM

By the isomorphism (13), we see that theorem 4.0.1 follows from the following
result.

Proposition 4.3.1. The Hilbert scheme of n-points on affine space Hilbn(A2) is isomor-
phic to the nonsingular algebraic variety

(15) H̃s
n // GL(n, C).

PROOF. We will use the algebraic slice theorem as formulated in the previous
lecture to argue why H̃s

n // GL(n; C) is nonsingular. Before taking the quotient, we
need to see that Hs

n is non-singular. Consider the map

(16) F : End(Cn)⊗2 ⊗ Cn → End(C2)

defined by F(X, Y, i) = [X, Y]. Let S be the subset of End(Cn)⊗2 ⊗ Cn consisting
of triples (X, Y, i) satisfying the stability condition. Observe that H̃s

n = (F|S)−1(0).
To show that H̃s

n is non-singular it suffices to show that the derivative of F|S has
constant rank.

Lemma 4.3.2. Let D = D(X,Y,i)(F|S) be the derivative of the map F|S at (X, Y, i) ∈ S.
Then

(17) coker D = {A ∈ End(Cn) | [X, A] = [Y, A] = 0}.

Using this description we can define a map coker D → Cn by the rule A 7→
A(i(1)). Conversely, define a map Cn → coker D by sending v to the endomor-
phism A which satisfies

(18) Av(XkYli(1)) = XkYlv

for integers k, l ≥ 0. This is enough to define Av by the stability condition. These
maps are clearly mutual inverses so that coker D ' Cn. Thus, by the constant rank
level set theorem (see [Lee13][Theorem 5.12]) we see that H̃s

n is non-singular.

Next, we will apply Luna’s slice theorem to see that H̃s
n // GL(n, C) is non-

singular. For this we need to check that the action is free. Suppose that g ∈
GL(n, C) stabilizes (X, Y, i). This means that

(19) gXg−1 = X, gYg−1 = Y, gi = i.
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The last equality implies that ker(g − 1) ⊂ Cn contains im i. But the first two
equations imply that this subspace is stabilized by X, Y. Thus by the stability con-
dition g = 1. By the slice theorem

(20) Y def
= H̃s

n // GL(n, C) = H̃s
n/GL(n, C)

is a non-singular variety and the map

(21) H̃s
n → Y

is an étale principal GL(n, C)-bundle.

Now, to characterize Y as the Hilbert scheme of n-points on A2 we need to
construct a universal family over Y of 0-dimensional subschemes of size n. There
is a family on Y→ Y defined by the natural surjection

(22) f (z1, z2) ∈ C[z1, z2] 7→ f (X, Y)i(1) ∈ Cn.

To see that it is a universal family we need to show that if π : Z → U is any flat fam-
ily of 0-dimensional closed subschemes of A2 of size n, then there exists a unique
morphism φ : U → Y fitting into the pullback square

(23)
Z Y

U Y.

π

φ

By assumption π∗OZ is a locally free sheaf of rank n on U. Just as in the previ-
ous section, define X, Y as the OU-linear operators acting on π∗OZ given by multi-
plication by the coordinate functions z1, z2 respectively. Also let i be the image of
the constant polynomial 1 thought of as an sheaf homomorphism OU → π∗OZ. If
we fix an open cover U = ∪αUα so that π∗OZ is trivializable over Uα then we obtain
morphisms Uα → H̃s

n for each α. Composing with H̃s
n → Y these glue together to

define a morphism φ : U → Y. By construction we have φ∗Ỹ = Z. �

Remark 4.3.3. Notice that the proof of this result didn’t rely much of our knowl-
edge of the GIT quotient. Since the GL(n, C) action on H̃s

n is free, the GIT quotient
is the same as the set-theoretic quotient.
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