LECTURE 4

An explicit description of the Hilbert scheme

Today we will prove an explicit characterization of the Hilbert scheme. Let

(1) $H_n \subset \operatorname{Hom}(\mathbf{C}^n, \mathbf{C}^n)^{\oplus 2} \oplus \mathbf{C}^n \oplus (\mathbf{C}^n)^*$ is the set of tuples (X, Y, i, j) which satisfy (2) [X, Y] - ij = 0.

Also define

$$H_n^s \subset H_n$$

to be the subspace where

• the vector i(1) generates \mathbb{C}^n under the action by X, Y. This means that given $v \in \mathbb{C}^n$ there exists integers $k, l \ge 0$ such that $v = X^k Y^l i(1)$.

This last condition is called a *stability* condition. We will see many versions of it in future lectures.

THEOREM 4.0.1. For any *n* the Hilbert scheme $\text{Hilb}_n(\mathbf{A}^2)$ is a nonsingular algebraic variety of dimension 2*n*. Moreover, there is an isomorphism of algebraic varieties

(4)
$$\operatorname{Hilb}_{n}(\mathbf{A}^{2}) \simeq H_{n}^{s} // GL(n, \mathbf{C}).$$

There is a similar description of the symmetric product of A^2 .

THEOREM 4.0.2. There is an isomorphism of algebraic varieties

(5)
$$S^n \mathbf{A}^2 \simeq H_n // GL(n, \mathbf{C})$$

Moreover, the natural map $H_n^s \hookrightarrow H_n$ induces the Hilbert–Chow morphism

(6)
$$\pi_{HC} \colon \operatorname{Hilb}_n(\mathbf{A}^2) \to S^n \mathbf{A}^2$$

4.1. A DESCRIPTION OF THE SYMMETRIC PRODUCT

We will begin with the description of the symmetric product which means we will momentarily forget about the stability condition. First, let's carefully describe how $GL(n, \mathbb{C})$ acts on H_n . The action is a restriction of the most natural one where $GL(n; \mathbb{C})$ acts on endomorphisms of \mathbb{C}^n by conjugation and acts on \mathbb{C}^n (respectively $(\mathbb{C}^n)^*$) in the defining (respectively antidefining) way. Explicitly, for *g* an invertible $n \times n$ matrix and $(X, Y, i) \in H'_n$ the action is

(7)
$$g \cdot (X, Y, i, j) \stackrel{\text{def}}{=} \left(g X g^{-1}, g Y g^{-1}, g i, j g^{-1} \right).$$

The following lemma is a direct calculation and can be found in [Nak99, §2].

Lemma 4.1.1. Suppose [X, Y] + ij = 0 as above. Let $S \subset \mathbb{C}^n$ be the subset (8) $\sum (X^{n_1}Y^{m_1}\cdots X^{n_k}Y^{m_k})i(\mathbb{C}).$

Then $j|_S \equiv 0$.

Suppose that

(9)
$$\mathbb{O} \stackrel{\text{def}}{=} GL(n, \mathbb{C}) \cdot (X, Y, i, j)$$

is a closed orbit. Using $S \subset \mathbf{C}^n$ as in the lemma, we can decompose

(10)
$$\mathbf{C}^n = S \oplus S^{\perp}.$$

With respect to this decomposition the matrices (X, Y, i, j) have the form

(11)
$$X, Y = \begin{pmatrix} \star & \star \\ 0 & \star \end{pmatrix}, \quad i = \begin{pmatrix} \star \\ 0 \end{pmatrix}, \quad j = \begin{pmatrix} 0 & \star \end{pmatrix}$$

By closedness we can further assume that

(12)
$$X, Y = \begin{pmatrix} \star & 0 \\ 0 & \star \end{pmatrix}, \quad i = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad j = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

Thus, the condition [X, Y] + ij = 0 simply becomes [X, Y] = 0. Choose a basis so that X, Y are both upper triangular. Then, by the closedness assumption we can assume that X, Y are diagonalizable. The equivalence with $S^n \mathbf{A}^2$ associates a closed orbit to the simultaneous eigenvalues of the matrices X, Y.

Remark 4.1.2. The above argument can be modified to give a short proof that $End(\mathbb{C}^n) // GL(n, \mathbb{C}) \simeq \mathbb{A}^n$. Indeed, every matrix admits a basis for which it is upper triangular. If we assume a matrix lies in a closed orbit, then we can also assume it is diagonalizable. The equivalence then sends a closed $GL(n, \mathbb{C})$ -orbit to its *n*-tuple of eigenvalues.

4.2. Relating closed points

Before turning to the proof of theorem 4.0.1, we will give a heuristic argument for the result. First, it turns out that we can simplify the description of H_n .

Lemma 4.2.1. Suppose that $(X, Y, i, j) \in H_n^s$. Then j = 0.

Let \widetilde{H}_n^s be the subspace consisting of (X, Y, i) with the property that [X, Y] = 0and *i* generates \mathbb{C}^n under the action by *X*, *Y*. Then as a corollary of this lemma we have $GL(n; \mathbb{C})$ -equivariant isomorphism

(13)
$$H_n^s \simeq H_n^s$$

Let's see how the data of a triple $(X, Y, i) \in \tilde{H}_n^s$ gives rise to a closed point in $\operatorname{Hilb}_n(\mathbf{A}^2)$. Notice that a closed point in $\operatorname{Hilb}_n(\mathbf{A}^2)$ is, by definition, an ideal *I* in $\mathbf{C}[z_1, z_2]$ such that $\mathbf{C}[z_1, z_2]/I$ is an *n*-dimensional vector space. Define the linear map

(14)
$$\phi_{(X,Y,i)} \colon \mathbf{C}[z_1, z_2] \to \mathbf{C}^n$$

by the formula $\phi_{(X,Y,i)}(f) = f(X,Y)i(1)$. Since im ϕ is invariant under the action of *X*, *Y* and contains im *i* we see that ϕ is surjective by the stability condition. Thus $I = \ker \phi$ is an ideal in $\mathbb{C}[z_1, z_2]$ and $\dim_{\mathbb{C}}(\mathbb{C}[z_1, z_2]/I) = n$.

Next, suppose *I* is an ideal of codimension *n* and let $V = \mathbb{C}[z_1, z_2]/I$. Then we have operators $X = z_1$, $Y = z_2$ and *i*: $\mathbb{C} \to V$ defined by $i(1) = 1 \mod I$. It is automatic that [X, Y] = 0 and that the stability condition holds.

It is not hard to check that these two operations are mutually inverse to one another, which thus gives an isomorphism of *sets* between $\tilde{H}_n^s/GL(n, \mathbb{C})$ and codimension *n* ideals in $\mathbb{C}[z_1, z_2]$.

4.3. PROOF OF THE THEOREM

By the isomorphism (13), we see that theorem 4.0.1 follows from the following result.

Proposition 4.3.1. *The Hilbert scheme of n-points on affine space* $Hilb_n(\mathbf{A}^2)$ *is isomorphic to the nonsingular algebraic variety*

(15)
$$H_n^s // GL(n, \mathbf{C}).$$

PROOF. We will use the algebraic slice theorem as formulated in the previous lecture to argue why $\tilde{H}_n^s // GL(n; \mathbb{C})$ is nonsingular. Before taking the quotient, we need to see that H_n^s is non-singular. Consider the map

(16)
$$F: \operatorname{End}(\mathbf{C}^n)^{\otimes 2} \otimes \mathbf{C}^n \to \operatorname{End}(\mathbf{C}^2)$$

defined by F(X, Y, i) = [X, Y]. Let *S* be the subset of $\text{End}(\mathbb{C}^n)^{\otimes 2} \otimes \mathbb{C}^n$ consisting of triples (X, Y, i) satisfying the stability condition. Observe that $\widetilde{H}_n^s = (F|_S)^{-1}(0)$. To show that \widetilde{H}_n^s is non-singular it suffices to show that the derivative of $F|_S$ has constant rank.

Lemma 4.3.2. Let $D = D_{(X,Y,i)}(F|_S)$ be the derivative of the map $F|_S$ at $(X,Y,i) \in S$. Then

(17)
$$\operatorname{coker} D = \{A \in \operatorname{End}(\mathbf{C}^n) \mid [X, A] = [Y, A] = 0\}.$$

Using this description we can define a map coker $D \rightarrow \mathbb{C}^n$ by the rule $A \mapsto A(i(1))$. Conversely, define a map $\mathbb{C}^n \rightarrow \operatorname{coker} D$ by sending v to the endomorphism A which satisfies

(18)
$$A_v(X^k Y^l i(1)) = X^k Y^l v$$

for integers $k, l \ge 0$. This is enough to define A_v by the stability condition. These maps are clearly mutual inverses so that coker $D \simeq \mathbb{C}^n$. Thus, by the constant rank level set theorem (see [Lee13][Theorem 5.12]) we see that \widetilde{H}_n^s is non-singular.

Next, we will apply Luna's slice theorem to see that $\widetilde{H}_n^s // GL(n, \mathbb{C})$ is nonsingular. For this we need to check that the action is free. Suppose that $g \in GL(n, \mathbb{C})$ stabilizes (X, Y, i). This means that

(19)
$$gXg^{-1} = X, \quad gYg^{-1} = Y, \quad gi = i.$$

The last equality implies that $\ker(g - 1) \subset \mathbb{C}^n$ contains im *i*. But the first two equations imply that this subspace is stabilized by *X*, *Y*. Thus by the stability condition g = 1. By the slice theorem

(20)
$$Y \stackrel{\text{def}}{=} \widetilde{H}_n^s // GL(n, \mathbf{C}) = \widetilde{H}_n^s / GL(n, \mathbf{C})$$

is a non-singular variety and the map

(21)
$$\widetilde{H}_n^s \to Y$$

is an étale principal $GL(n, \mathbf{C})$ -bundle.

Now, to characterize *Y* as the Hilbert scheme of *n*-points on \mathbf{A}^2 we need to construct a universal family over *Y* of 0-dimensional subschemes of size *n*. There is a family on $\mathcal{Y} \to Y$ defined by the natural surjection

(22)
$$f(z_1, z_2) \in \mathbf{C}[z_1, z_2] \mapsto f(X, Y)i(1) \in \mathbf{C}^n.$$

To see that it is a universal family we need to show that if $\pi: Z \to U$ is any flat family of 0-dimensional closed subschemes of \mathbf{A}^2 of size *n*, then there exists a unique morphism $\phi: U \to Y$ fitting into the pullback square

(23)
$$\begin{array}{c} Z \longrightarrow \mathcal{Y} \\ \pi \downarrow \qquad \downarrow \\ U \longrightarrow Y. \end{array}$$

By assumption $\pi_* \mathcal{O}_Z$ is a locally free sheaf of rank n on U. Just as in the previous section, define X, Y as the \mathcal{O}_U -linear operators acting on $\pi_* \mathcal{O}_Z$ given by multiplication by the coordinate functions z_1, z_2 respectively. Also let i be the image of the constant polynomial 1 thought of as an sheaf homomorphism $\mathcal{O}_U \to \pi_* \mathcal{O}_Z$. If we fix an open cover $U = \bigcup_{\alpha} U_{\alpha}$ so that $\pi_* \mathcal{O}_Z$ is trivializable over U_{α} then we obtain morphisms $U_{\alpha} \to \widetilde{H}_n^s$ for each α . Composing with $\widetilde{H}_n^s \to Y$ these glue together to define a morphism $\phi \colon U \to Y$. By construction we have $\phi^* \widetilde{Y} = Z$.

Remark 4.3.3. Notice that the proof of this result didn't rely much of our knowledge of the GIT quotient. Since the $GL(n, \mathbb{C})$ action on \tilde{H}_n^s is free, the GIT quotient is the same as the set-theoretic quotient.

Bibliography

- [Lee13] J. M. Lee. *Introduction to smooth manifolds*. Second. Vol. 218. Graduate Texts in Mathematics. Springer, New York, 2013, pp. xvi+708.
- [Nak99] H. Nakajima. Lectures on Hilbert schemes of points on surfaces. Vol. 18. University Lecture Series. American Mathematical Society, Providence, RI, 1999, pp. xii+132. URL: https: //doi.org/10.1090/ulect/018.