
LECTURE 1

The Heisenberg algebra

Last time we finished the computation of the generating function for the Poincaré
polynomials of the Hilbert scheme of points on C2. We saw that

(1) ∑
n≥0

Pt(Hilbn(C2)) = ∏
m≥1

1
1− t2m−2qm .

Notice that if we specialize t = 1 we uncover the infinite product ∏m≥1(1− qm)−1

(which is also the generating function for partitions).

Consider the polynomial algebra on an infinite number of generators

(2) C[x1, x2, . . .].

Of course, this is an infinite-dimensional space so it does not make sense to con-
template its dimension. However, if we introduce the operator

(3) L0
def
= ∑

m
mxm

∂

∂xm

then the individual L0-eigenspaces are finite dimensional. Indeed, let

(4) F(l) def
= {v(x1, x2, . . .) | L0v = lv}.

Notice that F(l) = 0 for l < 0, F(0) = F(1) = C and F(2) = span{x2
1, x2} = C2. By

definition the graded dimension (or q-dimension) of this vector space with respect
to the grading determined by L0 is

(5) ∑
l≥0

ql dim F(l).

An easy exercise identifies this graded dimension with the same infinite product
∏m≥1(1− qn)−1. What is the connection between these two computations?

1.1. THE (SUPER) HEISENBERG ALGEBRA

As a vector space, the Heisenberg Lie algebra h is C((t))⊕ C · K. The vector K
is central, and the Lie bracket is

(6) [ f (t), g(t)] = Res( f dg) · K
where Res is the residue at t = 0. Explicitly, on monomials this bracket reads

(7) [tn, tm] = mδn+m,0K.

We will denote the basis of monomials by bn
def
= tn.

For any κ ∈ C× the Lie algebra h acts on

(8) C[x1, x2, . . .]
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by the rules that b0 acts trivially,

(9) m > 0, bm 7→ κm
∂

∂xm

and

(10) m < 0, bm 7→ x−m.

Since b0 acts trivially this representation is not irreducible. But if we remove b0 to
form the Lie algebra h′ = h/Cb0 then this is an irreducible h′-representation which
we denote by Fκ—we call this the Heisenberg Fock module. Notice that as a vector
space we can identify this representation with

(11) Fκ = Sym(t−1C[t−1]).

We can extend the action of h′ on Fκ by the element L0
def
= ∑m mxm

∂
∂xm

. Then we
have the character formula

(12) trFκ (q
L0) = ∑

l≥0
ql dim F(l)

κ = ∏
m≥1

1
1− qm

which agrees with the graded dimension from the introduction.

More generally, suppose that V is any vector space equipped with a non-degenerate
bilinear form 〈−,−〉. The Heisenberg Lie algebra associated to V is the Lie algebra
h(V) whose underlying vector space is

(13) h(V)
def
= V ⊗C C((t))⊕ C · K

and the bracket is

(14) [v⊗ f (t), w⊗ g(t) = 〈v, w〉Res( f dg)K

Let h′(V) be the quotient Lie algebra by the central subalgebra V ⊗ 1. The Fock
module associated to this Heisenberg algebra is, as a vector space, given by

(15) Fk(V) = Sym
(

V ⊗ t−1C[t−1]
)

.

This admits an irreducible action of h′(V) by the same formulas as above.

The assignment V 7→ h′(V) defines a functor from the category of vector spaces
with bilinear forms to the category of Lie algebras. In fact, the same formulas define
a functor from the category of super vector spaces equipped with super bilinear
forms to the category of super Lie algebras.

Recall that a super vector space is a splitting of a vector space into even and
odd components

(16) V = Veven ⊕ΠVodd.

We write |v| = 0 if v ∈ Veven and |v| = 1 if v ∈ Vodd. A super bilinear form on V is a
bilinear functional satisfying

(17) 〈v, w〉 = (−1)|v||w|〈w, v〉.

For a super vector space V we will call h′(V) the (reduced) Heisenberg super
Lie algebra associated to V. When V is purely odd this is sometimes called the
infinite-dimensional Clifford algebra associated to V.
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The construction of the Fock module Fκ(V) is almost identical to the purely
bosonic case. The subtlety is that one should interpret the symmetric algebra as
the graded symmetric algebra. The symmetric algebra V 7→ S•(V) is a functor
from vector spaces to commutative algebras. The graded symmetric algebra V 7→
Sym(V) is a functor from super vector spaces to super commutative algebras. If
V = Veven ⊕ΠVodd then as an ordinary vector space one has

(18) Sym(V) = S(Veven)⊕∧(Vodd)

where ∧(−) is the exterior algebra.

Thus, as a vector space one can identify the general Fock module associated to
a super vector space V = Veven ⊕ΠVodd as

(19) Fκ(V) = S
(

Veven ⊗ t−1C[t−1]
)
⊗∧

(
Vodd ⊗ t−1C[t−1]

)
.

The operator L0 acting on Fκ(V) is defined as above. One can show that

(20) trFκ(V) qL0 = ∏
m≥1

(1 + qm)dim Vodd

(1− qm)dim Veven
.

If we take the super trace as opposed to the ordinary trace then this becomes

(21) strFκ(V) qL0 = ∏
m≥1

(1− qm)dim Vodd−dim Vev

1.2. BOREL–MOORE HOMOLOGY

The goal for the next few lectures is to construct a geometric action of the
Heisenberg algebra on the cohomology of Hilbert schemes.

Let X be any topological space which admits an embedding into Rm as a closed
subspace for some m. The Borel–Moore homology of X is defined to be

(22) HBM
i (X)

def
= Hm−i(Rm, Rm − X).

This definition is independent of the embedding chosen. If X can be embedded
into a closed, oriented m-manifold M as a closed subspace then

(23) HBM
i (X) = Hm−i(M, M− X).

Thus, if X is itself a closed, oriented m-manifold then

(24) HBM
i (X) = Hm−i(X).

For example HBM
i (Cn) is zero if i 6= 2n and one-dimensional for i = 2n. Notice

that by Poincaré duality the ordinary homology groups satisfy Hi(X) = Hm−i
c (X)

where the subscript c denotes cohomology with compact supports. Most of the
features of Borel–Moore homology we will use can be directly gleaned from stan-
dard facts about relative cohomology. For example, Borel–Moore homology enjoys
a Künneth formula

(25) HBM
• (X×Y) '−→ HBM

• (X)⊗ HBM
• (Y).

A key feature of Borel–Moore homology is that oriented manifolds, regardless of
whether they are compact, have fundamental classes. Indeed, for X a smooth man-
ifold of dimension m the above definition shows that HBM

m (X) = H0(X). When X
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is connected we denote the generator of this by [X] ∈ HBM
m (X). As another exam-

ple, there are long exact sequences for computing Borel–Moore homology; we will
not need those yet.

Let us dive into some more refined properties of this homology theory. From
the definition above one sees that Borel–Moore homology is a covariant functor for
proper maps. If f : X → Y is proper then we have a pushforward, or integration,
map

(26) f∗ : H•(X)→ H•(Y).

Notice that this preserves the natural grading on Borel–Moore homology. If g : Y →
Z is another proper map then (g ◦ f )∗ = g∗ ◦ f∗. Borel–Moore homology is con-
travariant for open embeddings. If U ⊂ X is an open subset then there is a natural
restriction map

(27) HBM
• (X)→ HBM

• (U).

There is also a sort of product structure on Borel–Moore homology, which bears
a connection to an intersection product. Let Z, Z′ be two closed subsets of an m-
dimensional oriented manifold M. Recall the cup product in cohomology

(28) ∪ : Hm−i(X, X− Z)× Hm−j(X, X− Z′)→ H2m−i−j(X, X− (Z ∪ Z′)).

By the definition of Borel–Moore homology this gives rise to the intersection pairing

(29) ∩ : HBM
i (Z)× HBM

j (Z′)→ HBM
i+j−m(Z ∩ Z′).

While the groups HBM
i (Z), etc. do not depend on M, this intersection product does!
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