LECTURE 1

The Heisenberg algebra

Last time we finished the computation of the generating function for the Poincaré polynomials of the Hilbert scheme of points on C^2 . We saw that

(1)
$$\sum_{n\geq 0} P_t(\text{Hilb}_n(\mathbf{C}^2)) = \prod_{m\geq 1} \frac{1}{1-t^{2m-2}q^m}$$

Notice that if we specialize t = 1 we uncover the infinite product $\prod_{m \ge 1} (1 - q^m)^{-1}$ (which is also the generating function for partitions).

Consider the polynomial algebra on an infinite number of generators

$$\mathbf{C}[x_1, x_2, \ldots].$$

Of course, this is an infinite-dimensional space so it does not make sense to contemplate its dimension. However, if we introduce the operator

(3)
$$L_0 \stackrel{\text{def}}{=} \sum_m m x_m \frac{\partial}{\partial x_m}$$

then the individual L_0 -eigenspaces are finite dimensional. Indeed, let

(4)
$$F^{(l)} \stackrel{\text{def}}{=} \{v(x_1, x_2, \ldots) \mid L_0 v = lv\}.$$

Notice that $F^{(l)} = 0$ for l < 0, $F^{(0)} = F^{(1)} = \mathbf{C}$ and $F^{(2)} = \text{span}\{x_1^2, x_2\} = \mathbf{C}^2$. By definition the graded dimension (or *q*-dimension) of this vector space with respect to the grading determined by L_0 is

(5)
$$\sum_{l\geq 0} q^l \dim F^{(l)}.$$

An easy exercise identifies this graded dimension with the same infinite product $\prod_{m\geq 1}(1-q^n)^{-1}$. What is the connection between these two computations?

1.1. THE (SUPER) HEISENBERG ALGEBRA

As a vector space, the Heisenberg Lie algebra \mathfrak{h} is $\mathbf{C}((t)) \oplus \mathbf{C} \cdot K$. The vector K is central, and the Lie bracket is

(6)
$$[f(t),g(t)] = \operatorname{Res}(fdg) \cdot K$$

where Res is the residue at t = 0. Explicitly, on monomials this bracket reads

(7)
$$[t^n, t^m] = m\delta_{n+m,0}K.$$

We will denote the basis of monomials by $b_n \stackrel{\text{def}}{=} t^n$.

For any $\kappa \in \mathbf{C}^{\times}$ the Lie algebra \mathfrak{h} acts on

$$\mathbf{C}[x_1, x_2, \ldots]$$

by the rules that b_0 acts trivially,

(9)
$$m > 0, \qquad b_m \mapsto \kappa m \frac{\partial}{\partial x_m}$$

and

$$(10) m < 0, b_m \mapsto x_{-m}.$$

Since b_0 acts trivially this representation is not irreducible. But if we remove b_0 to form the Lie algebra $\mathfrak{h}' = \mathfrak{h}/\mathbf{C}b_0$ then this is an irreducible \mathfrak{h}' -representation which we denote by F_{κ} —we call this the Heisenberg Fock module. Notice that as a vector space we can identify this representation with

(11)
$$F_{\kappa} = \operatorname{Sym}(t^{-1}\mathbf{C}[t^{-1}]).$$

We can extend the action of \mathfrak{h}' on F_{κ} by the element $L_0 \stackrel{\text{def}}{=} \sum_m m x_m \frac{\partial}{\partial x_m}$. Then we have the character formula

(12)
$$\operatorname{tr}_{F_{\kappa}}(q^{L_0}) = \sum_{l \ge 0} q^l \dim F_{\kappa}^{(l)} = \prod_{m \ge 1} \frac{1}{1 - q^m}$$

which agrees with the graded dimension from the introduction.

More generally, suppose that *V* is any vector space equipped with a non-degenerate bilinear form $\langle -, - \rangle$. The Heisenberg Lie algebra associated to *V* is the Lie algebra $\mathfrak{h}(V)$ whose underlying vector space is

(13)
$$\mathfrak{h}(V) \stackrel{\text{def}}{=} V \otimes_{\mathbf{C}} \mathbf{C}((t)) \oplus \mathbf{C} \cdot K$$

and the bracket is

(14)
$$[v \otimes f(t), w \otimes g(t) = \langle v, w \rangle \operatorname{Res}(fdg)K$$

Let $\mathfrak{h}'(V)$ be the quotient Lie algebra by the central subalgebra $V \otimes 1$. The Fock module associated to this Heisenberg algebra is, as a vector space, given by

(15)
$$F_k(V) = \operatorname{Sym}\left(V \otimes t^{-1}\mathbf{C}[t^{-1}]\right).$$

This admits an irreducible action of $\mathfrak{h}'(V)$ by the same formulas as above.

The assignment $V \mapsto \mathfrak{h}'(V)$ defines a functor from the category of vector spaces with bilinear forms to the category of Lie algebras. In fact, the same formulas define a functor from the category of super vector spaces equipped with super bilinear forms to the category of super Lie algebras.

Recall that a super vector space is a splitting of a vector space into even and odd components

(16)
$$V = V_{even} \oplus \Pi V_{odd}.$$

We write |v| = 0 if $v \in V_{even}$ and |v| = 1 if $v \in V_{odd}$. A super bilinear form on V is a bilinear functional satisfying

(17)
$$\langle v, w \rangle = (-1)^{|v||w|} \langle w, v \rangle.$$

For a super vector space *V* we will call $\mathfrak{h}'(V)$ the (reduced) Heisenberg super Lie algebra associated to *V*. When *V* is purely odd this is sometimes called the infinite-dimensional Clifford algebra associated to *V*.

The construction of the Fock module $F_{\kappa}(V)$ is almost identical to the purely bosonic case. The subtlety is that one should interpret the symmetric algebra as the *graded* symmetric algebra. The symmetric algebra $V \mapsto S^{\bullet}(V)$ is a functor from vector spaces to commutative algebras. The graded symmetric algebra $V \mapsto$ Sym(V) is a functor from super vector spaces to super commutative algebras. If $V = V_{even} \oplus \Pi V_{odd}$ then as an ordinary vector space one has

(18)
$$\operatorname{Sym}(V) = S(V_{even}) \oplus \wedge (V_{odd})$$

where $\wedge(-)$ is the exterior algebra.

Thus, as a vector space one can identify the general Fock module associated to a super vector space $V = V_{even} \oplus \Pi V_{odd}$ as

(19)
$$F_{\kappa}(V) = S\left(V_{even} \otimes t^{-1}\mathbf{C}[t^{-1}]\right) \otimes \wedge \left(V_{odd} \otimes t^{-1}\mathbf{C}[t^{-1}]\right).$$

The operator L_0 acting on $F_{\kappa}(V)$ is defined as above. One can show that

(20)
$$\operatorname{tr}_{F_{\kappa}(V)} q^{L_0} = \prod_{m \ge 1} \frac{(1+q^m)^{\dim V_{odd}}}{(1-q^m)^{\dim V_{even}}}$$

If we take the super trace as opposed to the ordinary trace then this becomes

(21)
$$\operatorname{str}_{F_{\kappa}(V)} q^{L_0} = \prod_{m \ge 1} (1 - q^m)^{\dim V_{odd} - \dim V_{et}}$$

1.2. BOREL-MOORE HOMOLOGY

The goal for the next few lectures is to construct a geometric action of the Heisenberg algebra on the cohomology of Hilbert schemes.

Let *X* be any topological space which admits an embedding into \mathbf{R}^m as a closed subspace for some *m*. The Borel–Moore homology of *X* is defined to be

(22)
$$H_i^{BM}(X) \stackrel{\text{def}}{=} H^{m-i}(\mathbf{R}^m, \mathbf{R}^m - X).$$

This definition is independent of the embedding chosen. If *X* can be embedded into a closed, oriented *m*-manifold *M* as a closed subspace then

(23)
$$H_i^{BM}(X) = H^{m-i}(M, M-X).$$

Thus, if X is itself a closed, oriented *m*-manifold then

(24)
$$H_i^{BM}(X) = H^{m-i}(X).$$

For example $H_i^{BM}(\mathbb{C}^n)$ is zero if $i \neq 2n$ and one-dimensional for i = 2n. Notice that by Poincaré duality the ordinary homology groups satisfy $H_i(X) = H_c^{m-i}(X)$ where the subscript *c* denotes cohomology with compact supports. Most of the features of Borel–Moore homology we will use can be directly gleaned from standard facts about relative cohomology. For example, Borel–Moore homology enjoys a Künneth formula

(25)
$$H^{BM}_{\bullet}(X \times Y) \xrightarrow{\simeq} H^{BM}_{\bullet}(X) \otimes H^{BM}_{\bullet}(Y).$$

A key feature of Borel–Moore homology is that oriented manifolds, regardless of whether they are compact, have fundamental classes. Indeed, for *X* a smooth manifold of dimension *m* the above definition shows that $H_m^{BM}(X) = H^0(X)$. When *X*

is connected we denote the generator of this by $[X] \in H_m^{BM}(X)$. As another example, there are long exact sequences for computing Borel–Moore homology; we will not need those yet.

Let us dive into some more refined properties of this homology theory. From the definition above one sees that Borel–Moore homology is a covariant functor for proper maps. If $f: X \to Y$ is proper then we have a pushforward, or integration, map

(26)
$$f_* \colon H_{\bullet}(X) \to H_{\bullet}(Y).$$

Notice that this preserves the natural grading on Borel–Moore homology. If $g: Y \rightarrow Z$ is another proper map then $(g \circ f)_* = g_* \circ f_*$. Borel–Moore homology is contravariant for open embeddings. If $U \subset X$ is an open subset then there is a natural restriction map

(27)
$$H^{BM}_{\bullet}(X) \to H^{BM}_{\bullet}(U).$$

There is also a sort of product structure on Borel–Moore homology, which bears a connection to an intersection product. Let Z, Z' be two closed subsets of an *m*-dimensional oriented manifold *M*. Recall the cup product in cohomology

$$(28) \qquad \cup \colon H^{m-i}(X, X-Z) \times H^{m-j}(X, X-Z') \to H^{2m-i-j}(X, X-(Z \cup Z'))$$

By the definition of Borel–Moore homology this gives rise to the *intersection pairing*

(29)
$$\cap: H_i^{BM}(Z) \times H_j^{BM}(Z') \to H_{i+j-m}^{BM}(Z \cap Z')$$

While the groups $H_i^{BM}(Z)$, etc. do not depend on M, this intersection product does!