
LECTURE 2

The Hilbert scheme of points on a surface

In this lecture we introduce symmetric products of algebraic varieties, give a
scheme-theoretic definition of the Hilbert scheme of points, and introduce an ex-
plicit description using geometric invariant theory. The justification of this descrip-
tion is where we will go in the next few lectures. Much of what we do in this course
works over an arbitrary algebraically closed field. For the most part we will restrict
ourselves to working over C.

2.1. SYMMETRIC PRODUCTS AND HILBERT SCHEMES

Let’s begin with a simple example. Given any topological space X we can con-
sider the n-fold symmetric product

(1) SnX = X×n/Sn

where the symmetric group Sn acts on the cartesian product X×n in the natural way.
Notice that if X is a smooth manifold it is no longer the case that SnX is a smooth
manifold. The problem is that there are singular points (so-called ‘orbifold’ points.)
In a sense, the Hilbert scheme of points on X is a ‘resolution’ of these singularities.

There is the following algebraic interpretation of the symmetric product. For
example, suppose that X is just (complex) algebraic affine space A1 = Spec(C[x]).
Then, we have the following presentation

(2) SnA1 = Spec
(

C[x1, x2, . . . , xn]
Sn
)

where Sn permutes the variables xi in the defining way. By classical invariant the-
ory one knows that

(3) C[x1, . . . , xn]
Sn ' C[s1, . . . , sn]

where sn are the elementary symmetric polynomials in n-variables. Thus SnA1 '
An as algebraic varieties.

More generally, we have the following definition of the symmetric power of an
arbitrary affine algebraic variety X as

(4) SnX def
= Spec

((
C[X]⊗n)Sn

)
.

That is, the spectrum of the Sn invariants of the ring C[X]⊗n, where C[X] is the ring
of regular functions on X.

In higher dimensions, the symmetric powers of a smooth variety can be sin-
gular. Take for example the affine algebraic variety X = A2 = Spec C[z1, z2]. By
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definition, the symmetric square S2A2 is the spectrum of the following ring

(5) A = C[z1, z2, w1, w2]
Z/2

where Z/2 acts by zi ↔ wi for i = 1, 2.

Proposition 2.1.1. There is an isomorphism of rings

(6) A ' C[x, y, u, v, w]/(uv− w2).

In particular

(7) S2A2 ' A2 ×Q

where Q is the (singular) quadric in C3 defined by uv = w2.

PROOF. Make the following change of variables x = z1 + w1, y = z2 + w2, s =
z1−w1, t = z2−w2. Then, the Z/2 action on these new variables leaves x, y invari-
ant so that

(8) A ' C[x, y]⊗ B

where B = C[s, t]Z/2 and the new Z/2 action is s → −s, t → −t. If we further
reparameterize u = s2, v = t2, w = st we see that

(9) B ' C[u, v, w]/(uv− w2).

�

We want to do better than the symmetric product. Let X = Spec(A) be an affine
algebraic variety. The Hilbert scheme of n-points in X has underlying set defined
by

(10) Hilbn(X)
def
= {J ⊂ A | J ideal, dim(A/J) = n}.

When dim X = 1 it is easy to see that Hilbn(X) = SnX. But more generally, the
Hilbert schemes differ from the symmetric powers. There is, however, a natural
map

(11) πHC : Hilbn(X)→ SnX

called the Hilbert–Chow morphism. On sets, it sends an ideal J ⊂ A to the support
supp(A/J).

Remark 2.1.2. Here, if M is an A-module then its support supp(M) ⊂ X = Spec(A)
can be thought of as an unordered set of points in X.

Remark 2.1.3. If dim X = 2, and X is nonsingular, then the Hilbert–Chow mor-
phism is a resolution of singularities.

This is the definition of the Hilbert scheme as a set. Below we will see how one
endows it with the structure of a scheme.

Here is another useful presentation of the Hilbert scheme as a set.

Lemma 2.1.4. Let X = Spec(A) be an affine variety. There is a bijection of Hilbn(X)
with the set of pairs

(12) (M, v)

where M is an A-module of dimension n and v ∈ M is a vector which satisfies A · v = M
(such a vector is called a cyclic vector).
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PROOF. In one direction the correspondence takes an ideal J and sends it to
M = C[X]/J with v = 1. �

2.2. REPRESENTABILITY

In the next section we will define the Hilbert scheme using the functor of points
perspective. The main objects are functors of the form

(13) F : (Sch/S)
op → Sets

where Sch/S is the category of schemes over a fixed scheme S and the op denotes
the opposite category.

An important example of a contravariant functor is the following. Suppose that
X is any scheme. Then consider the “Yoneda” functor

(14) hX/S : (Sch/S)
op → Sets

defined by

(15) hX/S(U) = HomSch/S(U, X).

When we write U on the left hand side we implicitly remember it is a scheme over
S, that is, it comes with a morphism U → S.

Given a functor F : (Sch/S)
op → Sets we want to know whether it is repre-

sentable. This means that there is an equivalence of functors hX ' F for some
scheme X. In this case, we then say that X represents F. Let’s unpack what such an
equivalence would mean.

First off, an equivalence of functors means we have a natural transformation
η : hX → F. There is a canonical element in hX(X) given by the identity 1Y. Via the
transformation η we obtain an element

(16) ξ
def
= η(1X) ∈ F(X).

Conversely, given an element ξ ∈ F(X) we can construct a natural transformation
ηξ : hX → F as follows. For any f : Y → X in hX(Y) let ηξ( f ) = f ∗ξ. (Here f ∗ξ
stands for the image of ξ under the map F( f ) : F(Y) → F(X).) One can see that
these two operations are inverses to one another which gives the “Yoneda lemma”

(17) Fun(hX, F) ' F(X).

Thus we can rephrase representability as follows.

Definition 2.2.1. Let F be a functor as above. A pair (X, ξ) where X is a scheme
over S and ξ ∈ F(X) represents F if the induced natural transformation ηξ : hX/S →
F is an equivalence. Equivalently, for any T → S there is a natural one-to-one
correspondence between lifts

(18)
X

T S.

φ

and elements φ∗ξ ∈ F(T).
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The element ξ is usually called the universal family corresponding to F.

Example 2.2.2 (Point functor for projective space). Let S = Spec C for concreteness.
Which functor represents projective space Pn? Recall that Pn is the space of lines
in Cn+1. Thus, for a scheme X we can think about a map

(19) φ : X → Pn

as giving a family of lines in Cn+1 parametrized by X. Conversely, given a family
of lines in Cn+1 parametrized by X we should be able to construct such a map.

The important question is what does ‘family’ of lines mean in this context? A
first attempt would be to define a family of lines in Cn+1 parametrized by X as a
sub vector bundle of the trivial rank n + 1 bundle O⊕n+1

X . The problem with this
is that sub bundles are not so well-behaved sheaf-theoretically. Indeed, if F is a
locally free sheaf with corresponding bundle F and E ⊂ F is a locally free subsheaf
with corresponding bundle E, then the map on stalks Ex → Fx may not be injective.
Better, then, is to look at locally free subsheaves.

For a fixed scheme X let F(X) be the set of exact sequences

(20) 0→ K→ O⊕n+1
X → L→ 0

up to equivalence where L (or K) is rank one. We can upgrade X 7→ F(X) to
a functor as above; indeed, pulling back sheaves along X → Y results in a map
F(Y)→ F(X).

The functor F is represented by the projective space in the sense that there is a
natural bijective correspodence between maps φ : X → Pn and elements of F(X).

2.3. HILBERT SCHEMES: FORMAL DEFINITION

So far we have only provided the careful definition of the Hilbert scheme for
affine varieties. Even in this case we didn’t give an argument as to why it has the
structure of a scheme. The goal of this section is to remedy these two shortcom-
ings using the functor of points perspective. We will state, but not prove, a very
important result that the Hilbert scheme functor is representatable in an extremely
general situation. Later on, for Hilbert schemes on A2 we will come up with an
explicit presentation.

First a definition.

Definition 2.3.1. Let X be a scheme over S. An algebraic family of closed sub-
schemes of X/S parameterized by a scheme T is a closed subscheme

(21) Z ⊂ XT
def
= X×S T.

The family is flat if the induced morphism Z → XT → T is flat.

For the most part we will take S = Spec C. Fix a projective scheme X over
Spec C and let Sch/C be the category of all schemes over Spec C. Define the functor

(22) H ilbX : (Sch/C)
op → Sets

by sending a scheme T to the set of flat algebraic families of closed subschemes
parametrized by T. If f : T → T′ is a map of schemes then any T′-family Z ⊂ X×T′
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restricts along f to a T-family f ∗Z ⊂ X × T′. Thus, H ilbX is a contraviant functor
from the category of schemes over C to sets.

Now, we will define a subfunctor of H ilbX with some nice properties. Let
H ilbX,n be the subfunctor which assigns to a scheme T the set of families with
Hilbert polynomial P.

Aside 2.3.2 (Hilbert polynomial). The Euler characteristic of a sheaf F on X is

(23) χ(X,F) def
= ∑

i
(−1)i dim Hi(X,F).

Let j : X ↪→ PN be a projective scheme. For m ≥ 0 let OX(m) = j−1OPN (m) and
F(m) = F⊗OX OX(m). The Hilbert polynomial of F is defined by

(24) PF(m)
def
= χ(X,F(m)).

The fact that this is actually a polynomial requires a bit of work.

If Z ⊂ X× T is a closed family of subschemes parametrized by T then we let

(25) Pt(m)
def
= POZt

(m).

By flatness, when T is connected this polynomial is independent of t ∈ T. In this
case we simply denoted by P.

THEOREM 2.3.3 ([Gro95]). Let X be a projective scheme. Then, the functor H ilbX,P is
representable by a projective scheme that we denote by HilbP(X). In particular, this means
that there is a universal family ZX,P → HilbP(X) such that every family on a scheme U is
determined by restricting this family via a unique morphism U → HilbP(X).

Remark 2.3.4. This theorem implies that the full Hilbert scheme H ilbX (with no
condition on the Hilbert polynomial) is represented by the scheme

(26)
⊔
P

HilbP(X).

This result allows us to define the Hilbert scheme for any quasi-projective scheme.
Indeed, if Y ⊂ X is an open subscheme of a projective scheme then we have the
corresponding open subscheme HilbP(Y) ⊂ HilbP(X).

Definition 2.3.5. Let P be the constant polynomial P = n. Then, we denote HilbP(X) =
Hilbn(X) and call it the Hilbert scheme of n points on X.

It is worthwhile to see that in the case that X is an affine algebraic variety that
this definition agrees with (10). For the most part, we will restrict ourselves to
Hilbert schemes of points on schemes of dimension two. We will give an explicit
descriptions of the Hilbert scheme Hilbn(A2). Via a gluing argument, one can de-
fine the Hilbert scheme associated to any nonsingular complex surface in the com-
plex analytic category [Dou66]. In particular, for X a complex analytic surface the
space Hilbn(X) is defined and has the structure of a complex manifold.
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2.4. AN EXPLICIT DESCRIPTION

Suppose that X = Spec(A) is an affine algebraic variety and that G is a linear
algebraic group acting algebraically on X (all defined over C). We will also assume
that G is reductive meaning that its radical is a torus. It is in this case that the Lie
algebra g = Lie(G) is a direct sum of semisimple and commutative Lie algebras.

Definition 2.4.1. The geometric invariant theory (GIT) quotient of X = Spec A by
an algebraic G-action is the affine algebraic variety

(27) X // G def
= Spec

(
AG
)

.

Remark 2.4.2. It is a theorem of Hilbert that the algebra C[X]G is finitely generated.
Therefore the set of maximal ideals indeed defines an affine algebraic variety.

We will study GIT quotients in more detail during the next lecture. For the time
being, we will introduce an explicit GIT description of the Hilbert scheme.

Fix an integer n and consider the following (non-linear) subspace

(28) Hn ⊂ Hom(Cn, Cn)⊕2 ⊕ Cn ⊕ (Cn)∗

as the set of tuples (X, Y, i, j) which satisfy

(29) [X, Y]− ij = 0.

Also let

(30) Hs
n ⊂ Hn

be the subspace where i generates Cn under the action by X, Y. There is a natural
action of GL(n, C) on Hn and Hs

n.

The proof of the following result will occupy the next few lectures.

THEOREM 2.4.3. There are isomorphisms of algebraic varieties

SnA2 ' Hn // GL(n, C)

Hilbn(A2) ' Hs
n // GL(n, C).

Moreover, the natural map Hs
n ↪→ Hn induces the Hilbert–Chow morphism

(31) πHC : Hilbn(A2)→ SnA2.

Remark 2.4.4. Actually, one can obtain a slightly more minimal description of
Hilbn(A2). The condition that i generates Cn under the action of X, Y together
with (29) can be shown to imply that j = 0. Thus Hilbn(X) can be realized as
the GL(n; C) quotient of the set of triples (X, Y, i) such that [X, Y] = 0 and that i
generates Cn under the action by X, Y.



Bibliography

[Dou66] A. Douady. “Le problème des modules pour les sous-espaces analytiques compacts d’un
espace analytique donné”. Ann. Inst. Fourier (Grenoble) 16.fasc. 1 (1966), pp. 1–95. URL:
http://www.numdam.org/item?id=AIF_1966__16_1_1_0.

[Gro95] A. Grothendieck. “Techniques de construction et théorèmes d’existence en géométrie al-
gébrique. IV. Les schémas de Hilbert”. Séminaire Bourbaki, Vol. 6. Soc. Math. France, Paris,
1995, Exp. No. 221, 249–276.

7

http://www.numdam.org/item?id=AIF_1966__16_1_1_0

	Lecture 2. The Hilbert scheme of points on a surface
	2.1. Symmetric products and Hilbert schemes
	2.2. Representability
	2.3. Hilbert schemes: formal definition
	2.4. An explicit description

	Bibliography

