
LECTURE 1

Instantons and four-dimensional gauge theory

We turn to an important result behind a construction of [ADHM] which pro-
vides a description of the (framed) moduli space of instantons on R4 in terms of fi-
nite dimensional matrices akin to the presentation for the moduli space of (framed)
torsion-free sheaves on P2. The history of this subject is long and non-linear, but
we refer to Chapter 3 of [DonaldsonKronheimer] for a nice overview containing a
complete set of references.

An instanton is an anti-self dual (ASD) connection for the group U(r), which
on R4 we must require to be of finite energy meaning

∫
R4 |F|2d4x < ∞. In this

case the quantity n(A) = 1
8π2

∫
R4 |F|2d4x is an integer called the instanton number.

(Topologically this is the second Chern class of the underlying vector bundle.) The
main object of study in the next few lectures is the moduli space of instantons of
rank r and instanton number n.

1.1. ASPECTS OF FOUR-DIMENSIONAL GAUGE THEORY

First, let’s introduce some relevant objects for studying four-dimensional gauge
theory. Most of what we discuss here can (and should) be carried over to the case
of a Riemannian four-manifold (M, g); but we will focus on R4 with its flat metric.

Let T ∼= R4 be the fundamental representation of SO(4). Notice that ∧2T '
so(4), the adjoint representation of SO(4). Acting on two-forms, the Hodge star
operator satisfies ?2 = 1 and determines a decomposition

(1) ∧2 T ' ∧+ ⊗∧−

where ? acts on ∧± with eigenvalues ±1.

Let S be a complex two-dimensional vector space equipped with a Hermitian
metric. Also, fix an orientation λ ∈ ∧2S∗ with length |λ| = 2. Then, we can define
an anti-linear map J : S→ S by

(2) 〈x, Jy〉 = λ(x, y).

This map satisfies J2 = −1 and hence endows S with the structure of a quaternionic
vector space. Conversely, given J and the hermitian metric we can recover λ. This
gives an isomorphism between SU(2) and Sp(1) (=the group of unit quaternions).

Let S± be a pair of such vector spaces and consider the space

(3) HomJ(S+, S−) ⊂ Hom(S+, S−)

of complex linear maps which intertwine the J-actions (so are maps linear over
quaternions). This is a four-dimensional real vector space and determines a real
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slice in the space of all complex linear maps. It carries an induced Euclidean metric
so that the unit vectors in HomJ(S+, S−) are real linear maps S+ → S− which
preserve the hermitian metrics and symplectic forms.

Definition 1.1.1. A spin structure on the four-dimensional Euclidean vector space
T is a pair S± as above with an isomorphism

(4) Γ : T → HomJ(S+, S−)

preserving the Euclidean metrics.

The symmetry group of this data is Spin(4) = SU(2)× SU(2), the double cover
of SO(4). In this local geometric picture, there is a basically a unique spin structure
up to permuting S±.

Suppose that e ∈ T and consider Γ(e) : S+ → S−. and its hermitian adjoint
Γ(e)† : S− → §+. These satisfy Γ(e)†Γ(e) = 1 if |e| = 1 and

(5) Γ(e)†Γ(e′) + Γ(e′)†Γ(e) = 0

whenever (e, e′) = 0. From this we obtain an action of ∧2T ' so(4) on S+ by the
formula

(6) (e ∧ e′) · s = −Γ(e)†Γ(e′)s,

where (e, e′) = 0. Using the metric we can extend this to an action of ∧2T ' so(4).
Now it is clear that ∧− ⊂ ∧2T acts trivially and we get an isomorphism

(7) ∧+ '−→ su(S+).

This is an infinitesimal manifestation of the isomorphism SO(3) ' SU(2).

In fact, ∧2,−T acts trivially on S+ and there is a natural isomorphism

(8) ρ : ∧2,+ T ' su(2+).

Now, suppose that U is a two-dimensional complex vector space. For any 0 6=
u ∈ U we have an exact sequence

(9) 0→ C u−→ U u∧−−−→ ∧2U → 0

given by wedge product with u. Note that a nonzero element θ ∈ ∧2U gives an
identification ∧2U ' C.

Fix a hermitian metric on U (an hence on all of U’s wedge powers) such that
|θ| = 2. In local coordinates we can think about U as the space of constant co-
efficient holomorphic one-forms on C2 and we take θ = dz1dz2. The hermitian
structure allows us to consider the adjoint

(10) (u ∧−)† : C =θ ∧2U → U.

Lemma 1.1.2. Let S+ = C⊕∧2U = C⊕ C and S− = U. Then, the map

(11) Γ def
= u ∧ (−) + (u ∧−)† : ⊕U '−→ HomJ(S+, S−)

is an isomorphism which preserves the Euclidean metrics. In particular, U is equipped with
a canonical spin structure.
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1.2. MODULI OF INSTANTONS

Let X be a real four-dimensional hyperkähler manifold and suppose E → X is
a Hermitian vector bundle of rank r. Let A be the space of connections on E which
are compatible with the metric. The tangent space at a fixed connection A ∈ A is

(12) TAA ' Ω1(X, u(E)).

On A we have the following metric

(13) (α, β)
def
= −

∫
X

tr(α ∧ ?β), α, β ∈ Ω1(X, u(E)).

Proposition 1.2.1. Together with this metric, the hyperkähler structure on X endow A

with the structure of an infinite-dimensional hyperkähler manifold.

Let G be the group of gauge transformations associated to the bundle E. Its
Lie algebra is Lie(G) = Γ(X, u(E)) where u(E) ⊂ End(E) is the bundle of unitary
endomorphisms. Its dual is given by distributional sections of ∧4T∗X ⊗ u(E).

The standard G action on A by gauge transformations admits a hyperkähler
moment map

(14) µ = (µI , µJ , µK) : A→ R3 ⊗Ω4(X, u(E)) ⊂ R3 ⊗ Γ(X,∧4T∗X ⊗ u(E)).

Explicitly

(15) µa(A) = FA ∧ωa, a = I, J, K

where ωa ∈ Ω2(X), a = I, J, K are the Kähler forms associated with the complex
structures I, J, K respectively.

Lemma 1.2.2. The two-forms ωa, a = I, J, K are self-dual two-forms on X. Furthermore,
any self-dual two-form can be written as a linear combination of these two-forms.

From this lemma we see that

(16) FA ∧ωa = 0, a = I, J, K ⇐⇒ F+
A = 0.

In other words µ−1(0) is the space of anti-self-dual connections

(17) µ−1(0)/G = {A | F+
A = 0}/G

is the moduli space of anti-self-dual connections. Of course, the G action is very far
from being free, so this moduli space has singularities. The thing that is different
in this context is that the spaces µ−1(0) and G are infinite-dimensional, but the
quotient above is finite dimensional.

The constructions above carry over to the non-compact case at the expense of
having to slightly modify µ−1(0). When X = C2 we quotient out by gauge trans-
formations which converge to the identity at ∞ ∈ C2. Thus, we should extend our
gauge field to the one-point compactification S4 = C2 ∪ {∞} and consider the the
moduli space

(18) M
f r
ASD(n, r) def

= {ASD connections A on E | E∞ ' Cr}/ ' .

Here we only look at connection of instanton number n.
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We head towards a relationship between this moduli space and the sort of
reductions that we have been studying [ADHM]. Let V, W be Hermitian vector
spaces of dimension n, r respectively and consider the vector space

(19) Hn,r
def
= T∗ End(V)⊕ T∗Hom(W, V)

which is of dimension 2n2 + 2nr. The map µR : Hn,r → u(n) defined by

(20) µR(B1, B2, i, j) =
i
2

(
[B1, B†

1 ] + [B2, B†
2 ] + ii† − j† j

)
is a real moment map for the canonical U(n) action on Hn,r. The map µC : Hn,r →
gl(n) defined by

(21) µC(B1, B2, i.j) = [B1, B2] + ij.

is an algebraic/holomorphic moment map for the canonical GL(n, C) action on
Hn,r. Together these define the hyperkähler moment map

(22) µ = (µ1, µ2, µ3)
def
= (µR, Re µC, Im µC).

Let

(23) M0(n, r) = µ−1(0)/U(n) = µ−1
R (0) ∩ µ−1(0)/U(n)

be the hyperkähler reduction of Hn,r associated to ζ = 0. This space is singular, but
we can look at its regular locus

(24) M
reg
0 (n, r) = {[(B1, B2, i, j)] | stabilizer of (B1, B2, i, j) is trivial} ⊂M0(n, r).

Next time we will spend some time partially explaining the main result.

THEOREM 1.2.3 ([ADHM]). There is a bijective correspondence

(25) M
f r
ASD(n, r) 'M

reg
0 (n, r).
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