
LECTURE 1

Introduction to the class

Popularized and pioneered by Grothendieck, Hilbert schemes are among the
most fundamental moduli spaces in algebraic geometry. Given an algebraic vari-
ety one can study the space which parameterizes all possible subschemes of the
fixed variety; this space is called a Hilbert scheme. Throughout this course we will
study the Hilbert scheme of dimension zero subvarieties (points) of smooth alge-
braic surfaces. There is a nice balance of richness and accessibility in the context of
Hilbert schemes of points in algebraic surfaces. On one hand, the Hilbert scheme of
points of algebraic curves agrees with the symmetric product of the curve; so this
is a rather trivial case of Hilbert schemes. On the other hand, for smooth algebraic
varieties of dimension at least three, the Hilbert scheme of points is generally sin-
gular. It is in the case of dimension zero subschemes of a smooth algebraic variety
where the Hilbert scheme is smooth and irreducible.

In the case that the algebraic surface is affine space A2, one think about Hilbert
schemes as a particular moduli space of rank one torsion-free sheaves on the pro-
jective variety P2. More generally one can consider moduli spaces of torsion-free
sheaves of higher rank. These moduli spaces are amenable to similar tools and
techniques that one uses for Hilbert schemes.

Part of the goal of this course is to elucidate algebro-geometric properties of
Hilbert schemes of points and moduli spaces of torsion-free sheaves on smooth
algebraic surfaces. For the lecturer, however, perhaps most fascinating is the con-
nection between these moduli spaces and at least three other topics:

1. Moduli spaces of instantons on R4 and more generally singularities of ALE
type.

2. Representation theory of infinite-dimensional Lie algebras such as affine
Kac–Moody algebras.

3. String theory and M theory. Specifically the infamous theory X which one
can think about as a twist of the worldvolume theory of fivebranes in M
theory.

We will mostly be following the books [Nak99; Kir16].

1.1. QUIVER REPRESENTATIONS AND INSTANTONS

Solutions to the anti-self-dual Yang–Mills equations on a four-dimensional man-
ifold M are called instantons. Amazingly, by work of Atiyah, Drinfeld, Hitchin,
and Manin (ADHM) for M = R4 gauge equivalent classes of such connections can
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be described in terms of solutions of some quadratic equations for certain finite-
dimensional matrices [Ati+78]. This relies on a presentation of R4 = C2 as a hyper
Kähler space. Let us briefly sketch this approach for U(N) instantons of ‘charge k’.
Here, charge is given by

∫
S4 FA ∧ FA normalized so that it is an integer.

Fix the following data:

• a pair of complex vector spaces V, W of dimensions k, N, respectively.
• a pair of complex endomorphisms X, Y : V → V.
• a pair of linear maps i : W → V and j : V →W.

These are required to satisfy the ADHM equation

(1) XY−YX + ij = 0,

together with a non-degeneracy (or stability) condition. From this data one con-
structs an instanton on R4 which has rank N and topological charge k. This data
can be extracted from the so-called “ADHM quiver”, see figure ??. More precisely,
this data determines a representation of the ADHM quiver—roughly, the vector
spaces V, W label the nodes (there is a framed and an unframed node) and the
morphisms are labeled by the edges. The word ‘quiver’ simply refers to a directed
graph. The maneuver of associating to a quiver the above linear data will be ex-
plained in this course.

To connect to the Hilbert scheme on A2 one should look at rank one instantons
on R4. Strictly speaking, there are no instantons, but a slight variant of the above
construction in terms of the ADHM quiver returns the Hilbert scheme. Roughly
speaking, the moduli space of ‘non-commutative’ rank one instantons of charge k
can be identified with the Hilbert scheme of k points on A2.

On a more general class of non-compact four-manifolds which are asymptoti-
cally locally Euclidean (ALE) there is a description of instantons in terms of more
general quadratic equations also defined on some space of finite-dimensional ma-
trices [KN90; Nak94]. The corresponding moduli spaces can be described in terms
of a more general class of quivers whose underlying graphs are the Dynkin graphs
of type ADE. This is not an accident: there is a classification due to Kronheimer
of four-dimensional ALE spaces: they resolutions of singularities of the form C2/Γ
where Γ ⊂ SU(2) is a finite subgroup. Finite subgroups of SU(2) fall under the
same ADE classification as finite simple Lie groups. For this reason, sometimes
C2/Γ is referred to as a ADE singularity. The relationship between these related
classifications follows from the fact that both structures are governed by the com-
binatorics of the simply laced Dynkin diagrams.

Even if we forget the gauge theoretic origin, associated to any quiver is a mod-
uli space of representations called the Nakajima quiver variety. These will be the
main geometric objects we are concerned with in this course. In many cases, there
are independent, algebro-geometric descriptions of these moduli spaces in terms of
sheaves on complex varieties of dimension two. For example, in the ADHM case,
it corresponds to the moduli space of torsion-free sheaves on P2 which are of rank
N, framed at ∞ ∈ P2, and have second Chern class equal to k.
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1.2. INFINITE-DIMENSIONAL LIE ALGEBRAS

Cohomology is one of the fundamental invariants of a space. In this course
we will give a description of the cohomology of the Hilbert scheme and of more
general quiver varieties. For the Hilbert scheme we will work out a beautiful for-
mula for the generating function of the Poincaré polynomial derived originally by
Göttsche [Göt90]. This generating function is of the form

(2) ∑
n≥0

qnPHilbn(X)(t).

Here PY(t) = ∑n tn · (dim Hn(Y)) is the Poincaré polynomial of a space Y.

Amazingly, this generating function matches with an expression for the charac-
ter of a representations for a certain infinite-dimensional algebra called the Heisen-
berg algebra. The Heisenberg algebra heis is a central extension of the abelian Lie
algebra of Laurent polynomials in a single variable

(3) C→ heis→ C((z)).

It has irreducible representations labeled by a ‘level’ and a highest weight. One
of the main results of Nakajima [Nak97] and Grojnowski [Gro96] is that for X an
algebraic surface the direct sum of the homologies of Hilbert schemes

(4) ⊕n≥0 H• (Hilbn(X))

is a representation for heis. Moreover, the action of the Heisenberg algebra can
be constructed in a completely geometric way and each H•(Hilbn(X)) is a weight
space. Furthermore, one can actually argue that a richer structure is present on the
direct sum above.

A vertex algebra is a structure present in two-dimensional conformal field theory
(CFT). It is the algebraic structure carried by the so-called ‘local operators’ of a
holomorphic two-dimensional CFT. The direct sum above turns out to be a vertex
algebra in a totally geometric way.

For the case of higher ranks or more general quivers there is a similar picture.
Here, the Heisenberg algebra is replaced by a Lie algebras of affine Kac–Moody
type [Kac90].

1.3. CONNECTION TO STRING THEORY

A natural question to ask is for an ‘explanation’ for the relationship between
CFT and the Hilbert scheme or instanton moduli spaces. One potential answer
can be found in string theory. The Hilbert scheme of points and its higher rank
generalizations take part in a rich collection of dualities in string theory such as the
correspondence of Alday, Gaiotto, and Tachikawa [AGT10].

There is an infamous six-dimensional supersymmetric quantum field theory
which can be defined for any Lie algebra of type ADE, just as in the classification
of ALE spaces. From the point of view of string theory, one can think about the
theory as obtained from ‘compactifying’ string theory on an ALE space. Though,
no rigorous description of this theory exists, physicists are still able to glean useful
information from this setup.
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A setup relevant to the above discussion is to consider the six-dimensional the-
ory on a product of manifolds of the form

(5) Σ× X

where Σ is a Riemann surface and X is a complex two-dimensional surface. The
‘compactification’ in the X direction yields a two-dimensional CFT whose states
bear a close relationship to the cohomology of moduli spaces we will be consider-
ing. The remaining Σ-direction exhibits the rich structure of a CFT that we alluded
to above.
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