
LECTURE 5

Moduli spaces of sheaves, I

Last time we showed that the Hilbert scheme of n points in A2 is non-singular
and equivalent to the quotient of

(1) H̃s
n = {(X, Y, i) | [X, Y] = 0, and stability} ⊂ End(Cn)⊕2 ⊕ Cn.

by the natural GL(n, C) action. Today we will wrap up this discussion with a com-
putation of the dimension of Hilbn(A2) and some examples of Hilbert schemes for
small values of n. Then, we turn to a sheaf-theoretic description of the Hilbert
scheme.

5.1. DIMENSION OF THE HILBERT SCHEME

For (X, Y, i) ∈ H̃s
n let (C•, d) be the following complex

(2) End(Cn)
d1−→ End(Cn)⊕2 ⊕ Cn d2−→ End(Cn)

where the first arrow is the derivative of the GL(n, C) action

(3) d1(A) = ([A, X], [A, Y], Ai)

and the second arrow is

(4) d2(A, B, v) = [X, A] + [Y, B].

Then the tangent space at (X, Y, i) is

(5) T(X,Y,i) Hilbn(A2) ' H1(C, d).

We have already shown that the dimension of the cokernel of d2 is n. By the stabil-
ity condition we have ker d1 = 0. This shows that dim H1(C) = 2n.

5.2. EXAMPLES

Let’s consider some examples of Hilbn(A2) for small n. For n = 1 we have
X = x, Y = y for some numbers x, y ∈ C. Furthermore, the stability condition
implies that i 6= 0. Using the C×-action we can assume that i = 1. The ideal
corresponding to the pair x, y is

(6) I = { f (z1, z2) ∈ C[z1, z2] | f (x, y) = 0}.

This is simply the maximal idea corresponding to (x, y) ∈ A2. Thus Hilb1(A2) =
A2.
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Next we look at n = 2. Then X, Y are 2× 2 matrices. Suppose that at least one
of X, Y have distinct eigenvalues. Since [X, Y] = 0 we can assume that

(7) X =

(
x1 0
0 x2

)
, Y =

(
y1 0
0 y2

)
with (x1, y1) 6= (x2, y2). By the stability condition we can take

(8) i(1) =
(

1
1

)
The corresponding ideal is

(9) I = { f (z1, z2) ∈ C[z1, z2] | f (xi, yi) = 0},
which corresponds to two distinct points in A2. Thus away from the diagonal in
A2 ×A2 the Hilbert scheme agrees with S2A2.

The interesting stuff happens when we assume that X, Y each have one eigen-
value. We cannot assume that X, Y are both diagonalizable as this violates the
stability condition. Thus, we have

(10) X =

(
x a
0 x

)
, Y =

(
y b
0 y

)
for some (a, b) ∈ A2 − 0. In this basis we can assume that

(11) i(1) =
(

0
1

)
The corresponding ideal is

(12) I =
{

f (z1, z2) ∈ C[z1, z2] | f (x, y) =
(

a
∂ f
∂z1

+ b
∂ f
∂z2

)
(x, y) = 0

}
.

This corresponds to two infinitesimally close points in A2 at (x, y) which point to
each other in the direction of the vector field a ∂

∂z1
+ b ∂

∂z2
.

5.3. TORSION-FREE SHEAVES

A quasi-coherent sheaf F on an algebraic variety X is torsion-free if for every
affine open subset U ⊂ X the space of local sections F(U) is torsion-free as a mod-
ule over the ring of functions O(U) on U. That is, for ever nonzero section s ∈ F(U)
and nonzero function f : U → C one has f · s 6= 0. A typical example of a torsion-
free sheaf is the sheaf of sections of a vector bundle; the condition of being a locally
free implies torsion-free. We will mostly be concerned with coherent torsion-free
sheaves.

For any quasi-coherent sheaf F there is a canonical morphism

(13) F → (F∨)∨ = F∨∨

where F∨ = HomOX (F,OX) is the dual sheaf.1 The main technical result about
torsion-free sheaves that we will use is the following.

THEOREM 5.3.1 ([??]). Let X be a non-singular algebraic variety and suppose F is a
coherent torsion-free sheaf on X. Then:

1A quasi-coherent sheaf which is isomorphic to its double dual is called reflexive.
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• there exists a Zariski open set U ⊂ X of codimension≥ 2 such that F|U is locally
free.
• If dim X = 2 then the sheaf F∨∨ is locally free of finite rank and the morphism
F → F∨∨ is injective. Restriction of this morphism to U results in an isomor-
phism F|U

∼−→ F∨∨|U .

By the second item we see that any torsion-free sheaf is a subsheaf of a coherent
locally free sheaf. Consider the dual F∨ and write this as the quotient of a locally
free sheaf E. Then F∨∨ is a subsheaf of E∨ which is still locally free.

Example 5.3.2. Suppose that F is a rank one torsion-free sheaf on a surface S. Since
F∨∨ is locally free it is a line bundle.

Example 5.3.3. Suppose that J ∈ Hilbn(X) where X is any affine variety (not nec-
essarily of dimension two). Let FJ be the corresponding ideal sheaf of OX which
satisfies Γ(X,FJ) = J. Then FJ is torsion-free and O/FJ is a torsion sheaf

(14) Γ(X,OX/J) = C[X]/J.

Example 5.3.4. Consider the ideal sheaf of the point 0 ∈ A2. This sheaf is torsion-
free but not locally free.

Example 5.3.5. Consider the morphism of sheaves on A2

(15) φ : O→ O⊕2

defined by Φ( f ) = (z1 f , z2 f ). Then φ is injective and its image is

(16) im(φ) = {( f1, f2) | z1 f2 = z2 f1} ⊂ O⊕2.

We claim that

(17) F
def
= coker φ

is a torsion-free sheaf. Indeed let ψ : O⊕2 → O be ψ(g1, g2) = z2g1 − z1g2. Then
ker ψ = im φ so

(18) F ' im ψ = { f ∈ O | f (0, 0) = 0}.
By this last equivalence we see that F is isomorphic to a subsheaf of O.

More generally one has the following. Let V be a finite dimensional vector
space and A1, A2 ∈ End(V). Denote by V = O⊗V the trivial vector bundle on A2

with fiber V. Define

(19) φ : V→ V⊗ C2

by s 7→ ((A1 − z1)s, (A2 − z2)s).

Lemma 5.3.6. The sheaf coker φ is torsion-free.
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