LECTURE 5

Moduli spaces of sheaves, I

Last time we showed that the Hilbert scheme of *n* points in A^2 is non-singular and equivalent to the quotient of

(1) $\widetilde{H}_n^s = \{ (X, Y, i) \mid [X, Y] = 0, \text{ and stability} \} \subset \operatorname{End}(\mathbf{C}^n)^{\oplus 2} \oplus \mathbf{C}^n.$

by the natural $GL(n, \mathbb{C})$ action. Today we will wrap up this discussion with a computation of the dimension of $\operatorname{Hilb}_n(\mathbb{A}^2)$ and some examples of Hilbert schemes for small values of *n*. Then, we turn to a sheaf-theoretic description of the Hilbert scheme.

5.1. DIMENSION OF THE HILBERT SCHEME

For $(X, Y, i) \in \widetilde{H}_n^s$ let (C^{\bullet}, d) be the following complex

(2)
$$\operatorname{End}(\mathbf{C}^n) \xrightarrow{d_1} \operatorname{End}(\mathbf{C}^n)^{\oplus 2} \oplus \mathbf{C}^n \xrightarrow{d_2} \operatorname{End}(\mathbf{C}^n)$$

where the first arrow is the derivative of the $GL(n, \mathbb{C})$ action

(3)
$$d_1(A) = ([A, X], [A, Y], Ai)$$

and the second arrow is

(4)
$$d_2(A, B, v) = [X, A] + [Y, B].$$

Then the tangent space at (X, Y, i) is

(5)
$$T_{(X,Y,i)} \operatorname{Hilb}_n(\mathbf{A}^2) \simeq H^1(C, \mathbf{d})$$

We have already shown that the dimension of the cokernel of d_2 is n. By the stability condition we have ker $d_1 = 0$. This shows that dim $H^1(C) = 2n$.

5.2. EXAMPLES

Let's consider some examples of $\text{Hilb}_n(\mathbf{A}^2)$ for small n. For n = 1 we have X = x, Y = y for some numbers $x, y \in \mathbf{C}$. Furthermore, the stability condition implies that $i \neq 0$. Using the \mathbf{C}^{\times} -action we can assume that i = 1. The ideal corresponding to the pair x, y is

(6)
$$I = \{f(z_1, z_2) \in \mathbf{C}[z_1, z_2] \mid f(x, y) = 0\}.$$

This is simply the maximal idea corresponding to $(x, y) \in \mathbf{A}^2$. Thus $\text{Hilb}_1(\mathbf{A}^2) = \mathbf{A}^2$.

Next we look at n = 2. Then X, Y are 2×2 matrices. Suppose that at least one of X, Y have distinct eigenvalues. Since [X, Y] = 0 we can assume that

(7)
$$X = \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 & 0 \\ 0 & y_2 \end{pmatrix}$$

with $(x_1, y_1) \neq (x_2, y_2)$. By the stability condition we can take

The corresponding ideal is

(9)
$$I = \{f(z_1, z_2) \in \mathbf{C}[z_1, z_2] \mid f(x_i, y_i) = 0\},\$$

which corresponds to two distinct points in A^2 . Thus away from the diagonal in $A^2 \times A^2$ the Hilbert scheme agrees with S^2A^2 .

The interesting stuff happens when we assume that X, Y each have one eigenvalue. We cannot assume that X, Y are both diagonalizable as this violates the stability condition. Thus, we have

(10)
$$X = \begin{pmatrix} x & a \\ 0 & x \end{pmatrix}, \quad Y = \begin{pmatrix} y & b \\ 0 & y \end{pmatrix}$$

for some $(a, b) \in \mathbf{A}^2 - 0$. In this basis we can assume that

(11)
$$i(1) = \begin{pmatrix} 0\\1 \end{pmatrix}$$

The corresponding ideal is

(12)
$$I = \left\{ f(z_1, z_2) \in \mathbf{C}[z_1, z_2] \mid f(x, y) = \left(a \frac{\partial f}{\partial z_1} + b \frac{\partial f}{\partial z_2} \right) (x, y) = 0 \right\}.$$

This corresponds to two infinitesimally close points in \mathbf{A}^2 at (x, y) which point to each other in the direction of the vector field $a \frac{\partial}{\partial z_1} + b \frac{\partial}{\partial z_2}$.

5.3. TORSION-FREE SHEAVES

A quasi-coherent sheaf \mathcal{F} on an algebraic variety X is *torsion-free* if for every affine open subset $U \subset X$ the space of local sections $\mathcal{F}(U)$ is torsion-free as a module over the ring of functions $\mathcal{O}(U)$ on U. That is, for ever nonzero section $s \in \mathcal{F}(U)$ and nonzero function $f: U \to \mathbf{C}$ one has $f \cdot s \neq 0$. A typical example of a torsion-free sheaf is the sheaf of sections of a vector bundle; the condition of being a locally free implies torsion-free. We will mostly be concerned with coherent torsion-free sheaves.

For any quasi-coherent sheaf \mathcal{F} there is a canonical morphism

(13)
$$\mathfrak{F} \to (\mathfrak{F}^{\vee})^{\vee} = \mathfrak{F}^{\vee}$$

where $\mathfrak{F}^{\vee} = \operatorname{Hom}_{\mathfrak{O}_X}(\mathfrak{F}, \mathfrak{O}_X)$ is the dual sheaf.¹ The main technical result about torsion-free sheaves that we will use is the following.

THEOREM 5.3.1 ([??]). Let X be a non-singular algebraic variety and suppose \mathcal{F} is a coherent torsion-free sheaf on X. Then:

¹A quasi-coherent sheaf which is isomorphic to its double dual is called reflexive.

- there exists a Zariski open set $U \subset X$ of codimension ≥ 2 such that $\mathcal{F}|_U$ is locally free.
- If dim X = 2 then the sheaf 𝔅^{∨∨} is locally free of finite rank and the morphism 𝔅 → 𝔅^{∨∨} is injective. Restriction of this morphism to U results in an isomorphism 𝔅|_U ~ 𝔅^{∨∨}|_U.

By the second item we see that any torsion-free sheaf is a subsheaf of a coherent locally free sheaf. Consider the dual \mathcal{F}^{\vee} and write this as the quotient of a locally free sheaf \mathcal{E} . Then $\mathcal{F}^{\vee\vee}$ is a subsheaf of \mathcal{E}^{\vee} which is still locally free.

Example 5.3.2. Suppose that \mathcal{F} is a rank one torsion-free sheaf on a surface *S*. Since $\mathcal{F}^{\vee\vee}$ is locally free it is a line bundle.

Example 5.3.3. Suppose that $J \in \text{Hilb}_n(X)$ where X is any affine variety (not necessarily of dimension two). Let \mathcal{F}_J be the corresponding ideal sheaf of \mathcal{O}_X which satisfies $\Gamma(X, \mathcal{F}_I) = J$. Then \mathcal{F}_I is torsion-free and $\mathcal{O}/\mathcal{F}_I$ is a torsion sheaf

(14)
$$\Gamma(X, \mathcal{O}_X/J) = \mathbf{C}[X]/J.$$

Example 5.3.4. Consider the ideal sheaf of the point $0 \in \mathbf{A}^2$. This sheaf is torsion-free but not locally free.

Example 5.3.5. Consider the morphism of sheaves on A^2

$$(15) \qquad \phi: \mathcal{O} \to \mathcal{O}^{\oplus 2}$$

defined by $\Phi(f) = (z_1 f, z_2 f)$. Then ϕ is injective and its image is

(16)
$$\operatorname{im}(\phi) = \{(f_1, f_2) \mid z_1 f_2 = z_2 f_1\} \subset \mathbb{O}^{\oplus 2}$$

We claim that

(17)
$$\mathcal{F} \stackrel{\text{def}}{=} \operatorname{coker} \phi$$

is a torsion-free sheaf. Indeed let $\psi \colon \mathbb{O}^{\oplus 2} \to \mathbb{O}$ be $\psi(g_1, g_2) = z_2g_1 - z_1g_2$. Then $\ker \psi = \operatorname{im} \phi$ so

(18)
$$\mathcal{F} \simeq \operatorname{im} \psi = \{ f \in \mathcal{O} \mid f(0,0) = 0 \}$$

By this last equivalence we see that \mathcal{F} is isomorphic to a subsheaf of \mathcal{O} .

More generally one has the following. Let *V* be a finite dimensional vector space and $A_1, A_2 \in \text{End}(V)$. Denote by $\mathcal{V} = \mathcal{O} \otimes V$ the trivial vector bundle on \mathbf{A}^2 with fiber *V*. Define

(19) $\phi \colon \mathcal{V} \to \mathcal{V} \otimes \mathbf{C}^2$

by $s \mapsto ((A_1 - z_1)s, (A_2 - z_2)s).$

Lemma 5.3.6. *The sheaf* coker ϕ *is torsion-free.*