LECTURE 5

Moduli spaces of sheaves, I

Last time we showed that the Hilbert scheme of 1 points in A? is non-singular
and equivalent to the quotient of

1) H, = {(X,Y,i) | [X,Y] =0, and stability} C End(C")*? @ C".

by the natural GL(n, C) action. Today we will wrap up this discussion with a com-
putation of the dimension of Hilb, (A?) and some examples of Hilbert schemes for
small values of n. Then, we turn to a sheaf-theoretic description of the Hilbert
scheme.

5.1. DIMENSION OF THE HILBERT SCHEME
For (X,Y,i) € HS let (C*,d) be the following complex

2) End(C") <5 End(C")®2 & C" < End(C")
where the first arrow is the derivative of the GL(n, C) action
3 di(A) = ([4, X], [A, Y], Ai)

and the second arrow is

4) d2(A,B,v) = [X, A] + [Y, B].

Then the tangent space at (X, Y, 1) is

(5) T(xy,) Hilb,(A%) ~ H'(C,d).

We have already shown that the dimension of the cokernel of d; is n. By the stabil-
ity condition we have kerd; = 0. This shows that dim H!(C) = 2n.

5.2. EXAMPLES

Let’s consider some examples of Hilb, (A?) for small n. For n = 1 we have
X = x,Y = y for some numbers x,y € C. Furthermore, the stability condition
implies that i # 0. Using the C*-action we can assume that i = 1. The ideal
corresponding to the pair x, y is

6) ['={f(z1,22) € Clz1,22] | f(x,y) = O}.

This is simply the maximal idea corresponding to (x,y) € A2 Thus Hilb;(A2) =
A2,
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Next we look at n = 2. Then X, Y are 2 x 2 matrices. Suppose that at least one
of X, Y have distinct eigenvalues. Since [X, Y] = 0 we can assume that

(3 2 (5 )

with (x1,1) # (x2,12). By the stability condition we can take

® iw=(3)

The corresponding ideal is
©) ['={f(z1,22) € Clz1, 2] | f(xi,:) = O},

which corresponds to two distinct points in A2. Thus away from the diagonal in
A? x A? the Hilbert scheme agrees with S2A2.

The interesting stuff happens when we assume that X, Y each have one eigen-
value. We cannot assume that X, Y are both diagonalizable as this violates the
stability condition. Thus, we have

(5 (3

for some (a,b) € A? — 0. In this basis we can assume that

(1) i(1) = (‘1))

The corresponding ideal is

(12) I = {f(zl,zz) € Clzy,z2] | f(x,y) = (aaf —I—baf> (x,y) = O}.

0z 027

This corresponds to two infinitesimally close points in A? at (x,y) which point to
each other in the direction of the vector field ”a% + baizz.

5.3. TORSION-FREE SHEAVES

A quasi-coherent sheaf J on an algebraic variety X is torsion-free if for every
affine open subset U C X the space of local sections F(U) is torsion-free as a mod-
ule over the ring of functions O(U) on U. That s, for ever nonzero section s € F(U)
and nonzero function f: U — C one has f -s # 0. A typical example of a torsion-
free sheaf is the sheaf of sections of a vector bundle; the condition of being a locally
free implies torsion-free. We will mostly be concerned with coherent torsion-free
sheaves.

For any quasi-coherent sheaf J there is a canonical morphism
(13) F— (FV) =g

where ¥ = Homg, (F,0x) is the dual sheaf." The main technical result about
torsion-free sheaves that we will use is the following.

THEOREM 5.3.1 ([??]). Let X be a non-singular algebraic variety and suppose J is a
coherent torsion-free sheaf on X. Then:

A quasi-coherent sheaf which is isomorphic to its double dual is called reflexive.
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o there exists a Zariski open set U C X of codimension > 2 such that |y is locally

free.
e Ifdim X = 2 then the sheaf F"V is locally free of finite rank and the morphism

F — FVYV is injective. Restriction of this morphism to U results in an isomor-
phism |y = FVV|y.

By the second item we see that any torsion-free sheaf is a subsheaf of a coherent
locally free sheaf. Consider the dual ¥V and write this as the quotient of a locally
free sheaf €. Then FVV is a subsheaf of &Y which is still locally free.

Example 5.3.2. Suppose that F is a rank one torsion-free sheaf on a surface S. Since
FVV is locally free it is a line bundle.

Example 5.3.3. Suppose that | € Hilb,(X) where X is any affine variety (not nec-
essarily of dimension two). Let J} be the corresponding ideal sheaf of Ox which
satisfies I'(X, F7) = J. Then Jj is torsion-free and O/ is a torsion sheaf

(14) I['(X,0x/])=C[X]/].

Example 5.3.4. Consider the ideal sheaf of the point 0 € A2. This sheaf is torsion-
free but not locally free.

Example 5.3.5. Consider the morphism of sheaves on A2

(15) ¢: 0 — O

defined by ®(f) = (z1f,z2f). Then ¢ is injective and its image is

(16) im(¢) = {(f1, f2) | 21f2 = 221} € OF2
We claim that

(17) F % coker ¢

is a torsion-free sheaf. Indeed let ¥: 992 — O be ¥(g1,82) = 2291 — z182- Then
kerip = im¢ so

(18) F~imy = {f € 0| £(0,0) = 0}.

By this last equivalence we see that J is isomorphic to a subsheaf of O.

More generally one has the following. Let V be a finite dimensional vector
space and A1, Ay € End(V). Denote by V = O ® V the trivial vector bundle on A?
with fiber V. Define

(19) ¢p:V -V C?
by s — ((A1 —z1)s, (A2 — z2)s).

Lemma 5.3.6. The sheaf coker ¢ is torsion-free.
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