
LECTURE 6

Moduli spaces of sheaves, II

We are heading towards a definition of the Hilbert scheme in terms sheaves.

6.1. CHERN CLASSES

Let X be a smooth algebraic variety over C, which you are free to think of as
just complex manifold. The jth Chern class of a complex vector bundle E over X is
an element

(1) cj(E) ∈ H2j(X; R).

The total Chern class is usually denoted

(2) c(E) = ∑
j≥0

cj(E) ∈ H2•(X; R),

or its one parameter version

(3) ct(E) = ∑
j≥0

tjcj(E) ∈ H2•(X; R)[t].

The Chern classes are determined by the following axioms.

• The zeroeth Chern class. For any bundle E→ X one has c0(E) = 1.
• Naturality. For any bundle E→ X and smooth map f : Y → X one has

(4) c( f ∗E) = f ∗c(E) ∈ H2•(X; R).

• Whitney sum. For a finite collection of bundles Ei one has

(5) c(⊕iEi) = ∏
i

c(Ei).

• Normalization. Let O(1) be the dual of the tautological line bundle over CP1.
Then

(6)
∫

CP1

c1(O(1)) = 1.

We will need to extend the definition of Chern classes to coherent sheaves. Let
Coh(X) be the category of coherent sheaves on X and let Vect(X) ⊂ Coh(X) be
the subcategory of locally free coherent sheaves. This subcategory is equivalent
to the category of holomorphic vector bundles on X; the equivalence is obtained
by taking the sheaf of holomorphic sections of a given holomorphic vector bundle.
Both Coh(X) and Vect(X) are abelian categories.
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Construction 6.1.1. Given any abelian category A we can look at the free abelian
group Z[A] which is generated by the isomorphism classes of objects of A. Given
a short exact sequence

(7) 0→ A→ B→ C → 0

in A we can form the element

(8) − [A] + [B]− [C] ∈ Z[A].

Let E(A) be the subgroup of Z[A] generated by elements of this form. The Grothendieck
group of the abelian category A is defined as the quotient group

(9) K0(A)
def
= Z[A]/E(A).

By definition, if (7) is a short exact sequence then we have the relation

(10) [B] = [A] + [C]

in K0(A).

If A0 ⊂ A is an additive (not necessarily full) subcategory which is closed under
extensions then the above definition endows K0(A0) also with the structure of an
abelian group. Such an A0 is called an exact category.

We apply this construction to the situation

(11) A0 = Vect(X) ⊂ Coh(X) = A.

Notice that tensor product endows both K0(X) = K0(Vect(X)) with the structure
of a commutative ring.

Lemma 6.1.2. Let X be a smooth complex variety or a complex manifold.

(1) The subring E(Vect(X)) ⊂ Z[Vect(X)] is an ideal, and therefore K0(X) has the
structure of a commutative ring with unit given by the trivial rank one vector
bundle.

(2) The group K0(Coh(X)) is naturally a module for K0(X).
(3) The embedding Z[Vect(X)] ↪→ Z[Coh(X)] determines a group homomorphism

(12) i : K0(X)→ K0(Coh(X)).

By the axioms of Chern classes above, we see that the total Chern class defines
a group homomorphism

(13) c : K0(X)→ H•(X).

An immediate consequence of this is a slightly more general version of the Whitney
sum axiom. If we have any exact sequence of vector bundles

(14) 0→ E′ → E→ E′′ → 0

then

(15) ct(E) = ct(E′) · ct(E′′).

Remark 6.1.3. In fact, there is a more refined relationship between K0(X) and the
cohomology of X.

The Chern character of a complex vector bundle E→ X is an element

(16) ch(E) ∈ H2•(X; R)
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defined formally as follows. Suppose that ξi are constants and x is a formal variable
such that

(17) ∑
i

ci(E)xi = ∏
i
(1 + ξix).

Then the Chern character is defined by

(18) ch(E) = ∑
i

eξi .

The Chern character enjoys a similar sum rule ch(⊕iEi) = ∑i ch(Ei) and also a
product identity

(19) ch(⊗iEi) = ∏
i

ch(Ei).

Immediately, then, we see that the Chern character defines a ring homomorphism

(20) ch : K0(X)→ H•(X).

Now, we can see how to extend Chern classes to coherent sheaves. Given a
coherent sheaf F on a smooth projective algebraic variety over C there exists a
locally free resolution of F (that is, a resolution by vector bundles) of the form

(21) 0→ E−n → E−n+1 · · · → E−1 → E0 → F → 0.

In the case of a general complex manifold such a resolution is only guaranteed to
exist locally. Using such a resolution we define

(22) c(F) def
= ∑

i
(−1)ic(Ei) ∈ H•(X).

One can show that this definition does not depend on the resolution.

This construction can be refined to providing an inverse j to the ring homomor-
phism i : K0(X)→ K0(Coh(X)) by the formula

(23) j([F]) = ∑
i
(−1)i[Ei].

The proof of the fact that these homomorphisms are inverses to each other is out-
side of the scope of these notes.

An important computational tool we will use, but not spend time providing
background on, is the Grothendieck–Riemann–Roch theorem. This very powerful
result is a generalization of the Hirzebruch–Riemann–Roch theorem in the context
of holomorphic vector bundles and complex manifolds.

Suppose that E is a coherent sheaf of X and that f : X → Y is a proper map
between smooth quasi-projective varieties. The Grothendieck–Riemann–Roch the-
orem presents a formula for the characteristic classes of f!E as

(24) ch( f!E) · Td(Y) = f∗ (ch(E) · Td(Y))

where

• ch is the Chern character as above which admits an expansion like

(25) ch = rk+c1 +
1
2
(c2

1 − 2c2) +
1
3!
(c3

1 − 3c1c2 + 3c3) + · · · .
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• td is the Todd class which admits an expansion like

(26) td = 1 +
1
2

c1 +
1

12
(c2

1 + c2) +
1
24

c1c2 + · · ·

• f! = ∑(−1)iRi f∗ : K0(X) → K0(Y) is the higher direct image or pushfor-
ward map in K-theory.
• f∗ : H•(X)→ H•(Y) is the pushforward map in cohomology.

Example 6.1.4. Suppose that Y = pt and that E is a vector bundle E→ X. Then

(27) ch( f!E) = χ(X, E)

is the holomorphic Euler characteristic. In this case the map f∗ in cohomology is of
degree −2n, so the theorem implies the Hirzebruch–Riemann-Roch theorem

(28) χ(X, E) = [ch(E) td(X)]2n .

Example 6.1.5. Suppose that we have a closed embedding i : Y ↪→ Z with corre-
sponding ideal sheaf IY. From the short exact sequence

(29) 0→ IY → OX → OY → 0

we can see that

(30) ck(IY) = (−1)k(k− 1)![Y]

where k is the codimension of Y in X and [Y] is the fundamental class of Y. In
particular if X is d-dimensional and Y is zero-dimensional with n-connected com-
ponents then

(31) cd(IY) = (−1)dn(d− 1)!.

6.2. TORSION-FREE SHEAVES ON SURFACES

Recall that if E is a torsion-free sheaf on a surface X then the natural map E →
E∨∨ is injective. In particular, there is an induced short exact sequence

(32) 0→ E→ E∨∨ → Q→ 0

The cokernel sheaf Q has the property that its support is zero-dimensional.

Consider projective space P2 and let `∞ ⊂ P2 be the line

(33) `∞ = {(0 : z2 : z3)} ⊂ P2.

Definition 6.2.1. Let E be a torsion-free sheaf on P2 of rank r. A framing is an
isomorphism Φ : E|`∞

'−→ O⊕r
`∞

. Denote a framed sheaf by a pair (E, Φ).

For a torsion-free sheaf the only topological invariant is its second Chern class,
which follows from the following lemma.

Lemma 6.2.2. Suppose E is a torsion-free sheaf on P2 which admits a framing. Then
c1(E) = 0.

PROOF. From the short exact sequence (32) we see that c1(E) = c1(E
∨∨). By

the framing condition, the support of the cokernel sheaf Q cannot intersect `∞, thus
E|`∞ ' E∨∨|`∞ . Finally, since E∨∨ is a line bundle we have 0 = c1(E

∨∨|`∞) =
c1(E

∨∨)|`∞ which implies c1(E
∨∨) = 0. �
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A map of framed sheaves

(34) F : (E, Φ)→ (E′, Φ′)

is a map of sheaves F : E→ E′ which intertwines the framings.

Definition 6.2.3. Let M f r(r, n) be the moduli space of framed sheaves (E, Φ) on P2

of rank r and c2(E) = n. As a set this is the set of isomorphism classes

(35) {[(E, Φ)] | rk(E) = r, c2(E) = n}.

This only really defines M f r(n, r) as a set, but it can be shown that it can be
given the structure of a scheme [NakajimaBook]. The rank one case is especially
relevant to the previous lectures.

Proposition 6.2.4. There is an isomorphism

(36) M f r(1, n) ' Hilbn(A2).

PROOF. Let E be a rank one torsion-free sheaf of second Chern class n. By the
framing condition we have an embedding

(37) E ↪→ E∨∨ ' OP2 .

We have already pointed out that the quotient sheaf Q = E∨/E has zero-dimensional
support away from `∞ ⊂ P2 and satisfies

(38) dim Γ(P2 − `∞,Q) = n.

This gives the correspondence

(39) M f r(1, n) '−→ Hilbn(P2 − `∞) ' Hilbn(A2)

�

Next time we will explain the so-called ADHM description of the moduli space
M f r(r, n) which is in the same spirit as the description of the Hilbert scheme in
terms of matrices. From there we will discuss the symplectic structure on these
moduli spaces.
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