LECTURE 7

Moduli spaces of sheaves, III

Today we will deduce the following description of the moduli space of torsion-free rank *r* sheaves. Let H(r, n) be the affine subspace of

(1)
$$\operatorname{End}(\mathbf{C}^n)^{\oplus n} \oplus \operatorname{Hom}(\mathbf{C}^r, \mathbf{C}^n) \oplus \operatorname{Hom}(\mathbf{C}^n, \mathbf{C}^r)$$

consisting of tuples (X, Y, I, J) such that

- [X, Y] + IJ = 0.
- there exists no proper subspace S ⊂ Cⁿ such that X · S ⊂ S, Y · S ⊂ S and im I ⊂ S.

We refer to the last item as the stability condition. There is an action of $GL(n, \mathbb{C})$ on H(r, n) defined by

(2)
$$g \cdot (X, Y, I, J) = (gXg^{-1}, gYg^{-1}, gI, Jg^{-1}).$$

THEOREM 7.0.1 (Barth). Let $\mathcal{M}(r, n)$ denote the moduli space of torsion-free sheaves on \mathbf{P}^2 of rank r and $c_2 = n$. There is an isomorphism

(3)
$$\mathfrak{M}(r,n) \simeq H(r,n)/GL(n,\mathbf{C}).$$

Like the Hilbert scheme, there is a functorial definition of $\mathcal{M}(r, n)$ which makes its scheme structure manifest. The $GL(n, \mathbb{C})$ action on H(r, n) is free so also like in the case of the Hilbert scheme $H(r, n)/GL(n, \mathbb{C})$ agrees with the affine GIT quotient. The above bijection of sets can be enhanced to an isomorphism of affine schemes.

This lecture closely follows the arguments in §2 of [Nak99].

7.1. TECHNICAL LEMMA

Suppose that \mathcal{E} is any sheaf on \mathbf{P}^2 and let $\mathcal{E}(k) = \mathcal{E} \otimes_{\mathbb{O}} \mathbb{O}(k)$. Also let Ω denote the rank two vector bundle

where $\mathcal{T}_{\mathbf{P}^2}$ is the tangent bundle. In the following we assume that \mathcal{E} is a torsion-free sheaf of rank r with $c_2(\mathcal{E}) = n$. We assume that \mathcal{E} is framed at the line $\ell_{\infty} = \{[0 : z_1 : z_2]\} \subset \mathbf{P}^2$.

Lemma 7.1.1. *For* p = 1, 2 *and* q = 0, 2 *one has*

(5)
$$H^q(\mathbf{P}^2, E(-p)) = 0$$

- and
- (6) $H^q(\mathbf{P}^2, E(-1) \otimes \mathbb{Q}).$

PROOF. Tensoring the short exact sequence

(7)
$$0 \to \mathcal{O}(-1) \to \mathcal{O} \to \mathcal{O}_{\ell_{\infty}} \to 0,$$

with $\mathcal{E}(-p)$ yields the short exact sequence

(8)
$$0 \to \mathcal{E}(-p-1) \to \mathcal{E}(-p) \to \mathcal{E}(-p)|_{\ell_{\infty}} \to 0.$$

Since $\mathcal{E}|_{\ell_{\infty}} \simeq \mathcal{O}_{\ell_{\infty}}^{\oplus r}$ we have

(9)
$$H^{0}(\mathbf{P}^{2}, \mathcal{E}(-p)|_{\ell_{\infty}}) = H^{1}(\mathbf{P}^{2}, \mathcal{E}(-p)|_{\ell_{\infty}}) = 0.$$

From the resulting long exact sequence in cohomology we obtain that

(10) $H^0(\mathbf{P}^2, \mathcal{E}(-p-1)) \simeq H^0(\mathbf{P}^2, \mathcal{E}(-p))$

for $p \ge 1$ and

(11)
$$H^2(\mathbf{P}^2, \mathcal{E}(-p-1)) \simeq H^2(\mathbf{P}^2, \mathcal{E}(-p))$$

for $p \leq 1$.

Recall that since \mathcal{E} is torsion-free we have that $\mathcal{E}^{\vee\vee}$ is locally free and that the canonical map $\mathcal{E} \hookrightarrow \mathcal{E}^{\vee\vee}$ is injective. Hence there is an injection $H^0(\mathbf{P}^2, \mathcal{E}(-p)) \hookrightarrow H^0(\mathbf{P}^2, \mathcal{E}^{\vee\vee}(-p))$. By Serre duality this means we have an inclusion

(12)
$$H^{0}(\mathbf{P}^{2}, \mathcal{E}(-p)) \hookrightarrow H^{2}(\mathbf{P}^{2}, (\mathcal{E}^{\vee \vee}(p-3)))^{\vee}$$

By the Serre vanishing theorem, for p large enough the right hand side is trivial. Combining with (10) we see that

(13)
$$H^0(\mathbf{P}^2, \mathcal{E}(-1)) \simeq H^0(\mathbf{P}^2, \mathcal{E}(-2)) \simeq \cdots \simeq 0.$$

Also by Serre vanishing together with (11) we see that

(14)
$$H^{2}(\mathbf{P}^{2}, \mathcal{E}(-2)) \simeq H^{2}(\mathbf{P}^{2}, \mathcal{E}(-1)) \simeq H^{2}(\mathbf{P}^{2}, \mathcal{E}) \simeq \cdots \simeq 0.$$

By a similar argument one obtains that $H^q(\mathbf{P}^2, \Omega \otimes \mathcal{E}(-1))$ for q = 0, 2.

7.2. THE MONADIC DESCRIPTION OF A TORSION-FREE SHEAF

Define the following vector spaces

• $V^{-1} = H^1(\mathbf{P}^2, \mathcal{E}(-2))$. Note that by the lemma above we have

$$\chi(\mathbf{P}^2, \mathcal{E}(-2)) = -\dim H^1(\mathbf{P}^2, \mathcal{E}(-2)).$$

Also by Hirzebruch-Riemann-Roch

$$\chi(\mathbf{P}^2, \mathcal{E}(-2)) = \int_{\mathbf{P}^2} \operatorname{ch}(\mathcal{E}(-2)) \operatorname{td}(\mathbf{P}^2)$$
$$= r \int_{\mathbf{P}^2} \operatorname{ch}(\mathcal{O}(-2)) \operatorname{td}(\mathbf{P}^2) - \int_{\mathbf{P}^2} c_2(E)$$
$$= r \chi(\mathbf{P}^2, \mathcal{O}(-2)) - n = -n.$$

Thus dim $V^{-1} = n$, so $V^{-1} \simeq \mathbf{C}^n$.

- $V^0 = H^1(\mathbf{P}^2, \mathcal{E}(-1) \otimes \mathbb{Q}^{\vee})$. This vector space has dimension 2n + r, so $V^0 \simeq \mathbf{C}^{2n+r}$.
- $V^1 = H^1(\mathbf{P}^2, \mathcal{E}(-1))$. This vector space has dimension *n*, so $V^1 \simeq \mathbf{C}^n$.

We won't prove the following lemma.

Lemma 7.2.1. Let E be a framed torsion-free sheaf. Then, there is a complex of sheaves

(16)
$$(\mathcal{V}^{\bullet}, \mathbf{d})$$

with $\mathcal{V}^{i} = \mathcal{O}_{\mathbf{P}^{2}}(i) \otimes V^{i}$ such that $H^{-1} = H^{1} = 0$ and
(17) $H^{0}(\mathcal{V}^{\bullet}, \mathbf{d}) \simeq \mathcal{E}.$

Let $a = d_{-1 \to 0}$ and $b = d_{0 \to 1}$ be the differentials in the complex of sheaves \mathcal{V}^{\bullet} . We can view

$$a \in H^{0}(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}(1)) \otimes \operatorname{Hom}(V^{-1}, V^{0})$$
$$b \in H^{0}(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}(1)) \otimes \operatorname{Hom}(V^{0}, V^{1})$$

In particular, *a*, *b* must be of the form

$$a = a_0 z_0 + a_1 z_1 + a_2 z_2$$

$$b = b_0 z_0 + b_1 z_1 + b_2 z_2$$

for some linear maps $a_i: V^{-1} \to V^0$, $b_i: V^0 \to V^1$. Since $d^2 = 0 \iff ba = 0$ we have the relations

$$b_0a_0 = 0, \quad b_0a_1 + b_1a_0 = 0$$

$$b_1a_1 = 0, \quad b_1a_2 + b_2a_1 = 0$$

$$b_2a_2 = 0, \quad b_0a_2 + b_2a_0 = 0.$$

By the technical lemma we can form the exact sequence

(18)
$$0 \to \mathcal{V}^{-1} \to \ker b \to \mathcal{E} \to 0$$

Consider the restriction of this complex of sheaves to the line at ∞

(19)
$$0 \to \mathcal{V}^{-1}|_{\ell_{\infty}} \xrightarrow{a_{\ell_{\infty}}} \ker b|_{\ell_{\infty}} \to \mathcal{E}|_{\ell_{\infty}} \to 0.$$

Note that $a|_{\ell_{\infty}} = a_1 z_2 + a_2 z_2$, $b|_{\ell_{\infty}} = b_1 z_1 + b_2 z_2$. From the resulting long exact sequence in cohomology we see that

$$H^{0}(\ell_{\infty}, \ker b|_{\ell_{\infty}}) \simeq H^{0}(\ell_{\infty}, \mathcal{E}|_{\ell_{\infty}}) \simeq \mathcal{E}|_{p}$$
$$H^{0}(\ell_{\infty}, \ker b|_{\ell_{\infty}}) \simeq H^{0}(\ell_{\infty}, \mathcal{E}|_{\ell_{\infty}}) = 0$$

where $p \in \ell_{\infty}$. The first isomorphism implies that

(20)
$$W \stackrel{\text{def}}{=} H^0(\ell_{\infty}, \ker b|_{\ell_{\infty}})$$

gives the trivialization of \mathcal{E} at ∞ , and hence the choice of basis of W gives the framing.

Similarly, we have the short exact sequence

(21)
$$0 \to \ker b|_{\ell_{\infty}} \to \mathcal{V}^{0}|_{\ell_{\infty}} \xrightarrow{b|_{\ell_{\infty}}} \mathcal{V}^{1}|_{\ell_{\infty}} \to 0$$

The long exact sequence in cohomology yields another short exact sequence

(22)
$$0 \to W \to V^0 \xrightarrow{\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}} z_1 V^1 \oplus z_2 V^1 \to 0.$$

where we have identified $H^0(\ell_{\infty}, \mathcal{O}_{\ell_{\infty}}(1)) \simeq \mathbb{C}z_1 + \mathbb{C}z_2$. From this short exact sequence we see that $W = \ker b_1 \cap \ker b_2$. Applying similar arguments to the dual sequence we see that the map

(23)
$$(a_1, a_2): \mathcal{O}_{\ell_{\infty}}(1) \otimes V^{-1} \simeq z_1 V^{-1} \oplus z_2 V^{-1} \to V^0$$

is injective and that $a|_{\ell_{\infty}}$ is injective at each fiber.

Restricting the original short exact sequence to $[0:1:0]\in\ell_\infty$ we have a sequence

$$(24) V^{-1} \xrightarrow{a_1} V^0 \xrightarrow{b_1} V^1$$

and ker $b_1 / \text{im } a_1 = E_{[0:1:0]} \simeq \text{ker } b_1 \cap \text{ker } b_2 = W$. Thus im $a_1 \cap \text{ker } b_2 = \text{im } a_1 \cap W = 0$ so that $b_2 a_1 \colon V^{-1} \to V^1$ is injective. Since V^{-1}, V^1 are of the same dimension, this map is an isomorphism.

Using this isomorphism we can identify $V = V^{-1} = V^1$ and the maps in the sequence

(25)
$$V \oplus V \xrightarrow{(a_1,a_2)} V^0 \xrightarrow{(b_1,b_2)^t} V \oplus V$$

with

(26)
$$a_1 = \begin{pmatrix} -\mathbb{1}_V \\ 0 \\ 0 \end{pmatrix}, \quad a_2 = \begin{pmatrix} 0 \\ -\mathbb{1}_V \\ 0 \end{pmatrix}$$

and

(27)
$$b_1 = \begin{pmatrix} 0 & -\mathbb{1}_V & 0 \end{pmatrix}, \quad b_2 = \begin{pmatrix} \mathbb{1}_V & 0 & 0 \end{pmatrix}.$$

From ba = 0 we obtain the following form of the remaining components

(28)
$$a_0 = \begin{pmatrix} X \\ Y \\ J \end{pmatrix}, \quad b_0 = \begin{pmatrix} -Y & X & I \end{pmatrix}.$$

Here [X, Y] + IJ = 0.

This gives us the following monadic description of \mathcal{E} .

(29)
$$V \otimes \mathcal{O}_{\mathbf{P}^2}(-1) \xrightarrow{a} \begin{pmatrix} V \\ V \\ W \end{pmatrix} \otimes \mathcal{O}_{\mathbf{P}^2} \xrightarrow{b} V \otimes \mathcal{O}_{\mathbf{P}^2}(1)$$

where

(30)
$$a = \begin{pmatrix} z_0 X - z_1 \\ z_0 Y - z_2 \\ z_0 J \end{pmatrix}$$

and

(31)
$$b = (-z_0Y + z_2 \quad z_0Y - z_1 \quad z_0I)$$

Now to go from the sheaf theoretic description to the description in terms of matrices we simply restrict this sequence to $\mathbf{P}^2 \setminus \ell_{\infty} \simeq \mathbf{A}^2$. The following lemma completes the result.

Lemma 7.2.2. Suppose that (X, Y, I, J) satisfy [X, Y] + IJ = 0. Then

- (1) ker a|_{A²} = 0.
 (2) b|_{A²} is surjective if and only if the stability condition holds.

Bibliography

[Nak99] H. Nakajima. Lectures on Hilbert schemes of points on surfaces. Vol. 18. University Lecture Series. American Mathematical Society, Providence, RI, 1999, pp. xii+132. URL: https: //doi.org/10.1090/ulect/018.