
LECTURE 1

The Springer resolution

Today we will consider an example of a symplectic resolution of singularities.
Recall that we are in the following situation. We have a Hamiltonian action of
a reductive group G on a symplectic variety X. We can consider the following
flavors of Hamiltonian reduction of the Hamiltonian G action on the cotangent
bundle T∗X:

(1) M0 = µ−1(0) // G

where µ : X → g∗ is the moment map and its twisted version

(2) Mχ = µ−1(0) //χ G

where χ : G → C× is a character. There is a canonical map

(3) π : Mχ →M0.

By the result we stated last time we see that when Mχ is non-singular then this map
is a resolution of singularities with the additional conditions that

• Mχ is symplectic and
• M0 is Poisson and the map π is a Poisson map.

We call such a resolution of singularities a symplectic resolution of singularities.

1.1. A REMINDER OF THE A1 CASE

Consider X = A2 with its standard G = C× action by scaling. Then C× acts on
the symplectic variety

(4) T∗X = {(i, j) | i ∈ (C2)∗, j ∈ C2}

in a Hamiltonian way with moment map µ(i, j) = ij.

We have seen that the affine GIT reduction of µ−1(0) by C× is the following
quadric

(5) M0
def
= µ−1(0) // C× ' Q = {(a, b, c) | a2 + bc = 0}

Also, for χ(λ) = λ we have seen that the twisted GIT reduction is

(6) Mχ = µ−1(0) //χ C× ' T∗P1.

Furthermore, we have the resolution of singularities

(7) π : T∗P1 → Q.
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Of course, T∗P1 is naturally a symplectic manifold. There is also a Poisson
structure on Q defined by

(8) {b, c} = 2a, {a, b} = b, {a, c} = −c.

Each of these structures is compatible with the standard symplectic structure on T∗A2,
and furthermore the map π is a Poisson morphism.

1.2. THE SPRINGER RESOLUTION

We consider a generalization of this example. In the remainder of this section
we take G = SL(n, C), but any semi-simple reductive group will work. Consider
the nilpotent cone defined by

(9) N
def
= {a ∈ g | aN = 0, for some N} ⊂ g.

Then N is an affine algebraic variety and it is equipped with a C× action a 7→ λa
(this is why it is called a ‘cone’). When G = SL(2, C) then we have N = Q from the
previous example. In general, N is a singular affine variety with cone point 0 ∈ N.

Consider a maximal torus T ⊂ G with Lie algebra h. Let B ⊂ G be a Borel
subgroup containing T. In the case G = SL(n, C) we can take B to be the subgroup
of upper triangular matrices. Define the flag variety of G to be

(10) F
def
= G/B

It is isomorphic to the variety of all Borel subgroups of G. In the case G = SL(n, C)
this is isomorphic to the set of full flags of n-dimensional space

(11) 0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn ' Cn

where dim Vi = i. We will denote such a flag by V• ∈ F.

Consider the special case of G = SL(n, C). Let

(12) Ñ
def
= {(V•, y) | yVi ⊂ Vi−1} ⊂ F× sl(n, C).

Notice that the condition yVi ⊂ Vi−1 implies that y is nilpotent, thus

(13) Ñ ⊂ F×N.

If we think about F instead as the space of all Borel subalgebras then Ñ is the set
of pairs (b, y) such that y ∈ b. The projection Ñ → F is a vector bundle with fiber
[b, b] = n.

Proposition 1.2.1. There is an isomorphism Ñ ' T∗F. In particular, Ñ carries a sym-
plectic structure. Further, the natural left action of SL(n, C) on Ñ is Hamiltonian with
moment map

(14) µ : Ñ→ sl(n, C)

defined by µ(V, y) = y.

PROOF. Fix a basis {e1, . . . , en} on Cn and let V0
• denote the standard flag given

by

(15) V0
i = span{e1, . . . , ei}.
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Then the Borel subgroup B is

(16) B = {g ∈ SL(n, C) | g ·V0
i ⊂ Vi}.

Now, from example ?? we have an identification

(17) T∗F = {(V, y) | tr(ay) = 0, for any a with a ·Vi ⊂ Vi} ⊂ F× sl(n, C).

This implies that Ñ ' T∗F as desired. �

Since the image of the moment map µ is contained in the nilpotent elements we
see that it defines a map

(18) µ : Ñ→ N.

It turns out that this is a symplectic resolution of singularities. For more details we
refer to [CG10].

1.3. SPRINGER RESOLUTION IN GENERAL

We briefly sketch how this construction is generalized to the case of an arbitrary
semisimple group G.

Lemma 1.3.1. There is an isomorphism

(19) T(F) ' G×B g/b

PROOF. Consider the trivial vector bundle on the G/B with fiber g. There is a
surjective map of vector bundles

(20) L : G/B× g→ T(G/B)

which sends a pair (gB, x) to the pair (gB, ξx(gB)) where ξx is the vector field on
G/B determined by the infinitesimal left action of x ∈ g. The kernel of this map
is the vector bundle whose fiber over gB is the Lie algebra of the stabilizer of gB;
which is the Borel subalgebra Adgb. There is an isomorphism

(21) G×B b→ ker L

sending [g, x] 7→ (gB, gxg−1). Thus we have an isomorphism of vector bundles

(22) T(G/B) ' (G/B× g)/(G×B b) ' G×B g/b

as desired. �

As a consequence we have

(23) T∗(G/B) ' G×B (g/b)∗.

Since G is semisimple we identify this with

(24) T∗(G/B) ' G×B b⊥,

where g = b⊕ b⊥ is the orthogonal decomposition with respect to the Killing form.
Furthermore, there is a direct sum decomposition b = h⊕ n where n ⊂ b is the
subalgebra of nilpotent elements in b. One can show that n ⊂ b⊥, so that T∗(G/
B) ' G×B n.
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Now, G acts on G/B so it automatically acts on T∗(G/B) in a Hamiltonian way.
Explicitly, the moment map

(25) µ : G×B n→ g∗ ' g

is µ([g, x]) = gxg−1. Again, it is immediate to see that this map lands in the set of
nilpotent elements N ⊂ g, so it defines a map

(26) µ : T∗(G/B)→ N.

Again, this is a symplectic resolution of singularities.

1.4. KÄHLER QUOTIENTS

We return to the relationship between the quotient of a vector space by a real
compact Lie group and the GIT reduction by the corresponding complex reductive
group. Let K be a compact real Lie group and let G be its complex form. We assume
that K ⊂ G and that the complexification K(C) ' G. Notice that at the level of Lie
algebras we have g = k⊗R C.

Let VR be a real vector space equipped with a positive definite inner product
g and a compatible complex structure I. When we chose to view VR as a complex
vector space via I we denote it by V. This equips VR with the structure of a Kähler
manifold. Let (−,−) be the corresponding Hermitian inner product and let ω =
Im(−,−) ∈ ∧2V∗R be the symplectic form. Suppose that K ⊂ U(VR) acts unitarily
on V and hence its complexification G ⊂ GL(V, C) acts through complex linear
transformations.

By assumption, the action of K is symplectic with respect to ω. Thus we have a
moment map

(27) µR : VR → k∗

defined explicitly by the rule that

(28) 〈µR(v), a〉 = 1
2

ω(x, a · x).

But, since ω is the imaginary part of the Hermitian inner product, we can write the
moment map as 〈µR(v), a〉 = i

2 (a · x, x).

In this situation we can contemplate two quotients, namely µ−1
R (0)/K and V //

G. (Recall that generally the G-orbit of an arbitrary element v ∈ V will not be G-
closed, so there is no expected relationship between V/K and V // G.) The Kempf–
Ness theorem states that these quotients can naturally be identified.

THEOREM 1.4.1 ([KN79]). The G-orbit of any x ∈ µ−1
R (0) in V is closed and fur-

thermore there is an isomorphism

(29) µ−1
R (0)/K '−→ V // G

intertwining the complex structures.

We will not prove this theorem, but let us unpack the last statement. By defini-
tion, the space µ−1(0)/K is the real Hamiltonian reduction of V by the K-action. It
inherits a Kähler structure from that on V. On the other hand, the right hand side
V // G is the affine GIT quotient, which is a complex affine variety by definition.
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