LECTURE 7

Symplectic reduction, I

We turn to an alternative description of affine (and twisted¹) GIT quotients. Let's motivate this by considering a simple example.

7.1. REDUCTIVE VERSUS UNITARY

Let *V* be a vector space equipped with a hermitian metric. Let $G \subset U(V)$ be a connected closed Lie group acting by unitary transformations on *V*.

Warning: In this section *G* denotes a real compact Lie group. We will denote its complex form by G^{C} .

We have defined the affine GIT quotient

(1)
$$V // G^{\mathbf{C}} = \operatorname{Spec} \mathbf{C}[V]^{G^{\mathbf{C}}}$$

The underlying space consists of the set of closed G^{C} -orbits. Let's consider the example

(2)
$$V = \operatorname{End}(\mathbf{C}^n)$$

with $g \in G = U(n)$ acting by conjugation $g \cdot B = g^{-1}Bg$. In this case, $G^{C} = GL(n, \mathbb{C})$, and we have identified the closed $GL(n, \mathbb{C})$ -orbits: a matrix has a closed G^{C} -orbit if and only if it is diagonalizable. Hence

(3)
$$V // G^{\mathbf{C}} = \operatorname{End}(\mathbf{C}^n) // GL(n, \mathbf{C}) \simeq \mathbf{C}^n.$$

On the other hand, a matrix *B* satisfies

$$[B, B^{\dagger}] = 0$$

if and only if it can be diagonalized by a unitary matrix (to see this use Schur's lemma which states that any complex square matrix is unitary equivalent to an upper triangular matrix). Thus there is a bijection

(5)
$$\operatorname{End}(\mathbf{C}^n) // GL(n, \mathbf{C}) \simeq \{B \in \operatorname{End}(\mathbf{C}^n) \mid [B, B^{\dagger}] = 0\} / U(n).$$

If we let

$$\mu\colon V \to \mathfrak{g}^*$$

be $\mu(B) = \frac{i}{2}[B, B^{\dagger}]$ (where we use the hermitian form to identify $\mathfrak{g} = Lie(U(n))$ with \mathfrak{g}^*) then we can rewrite this as

(7)
$$V // G^{\mathbf{C}} \simeq \mu^{-1}(0) / U(n).$$

¹We introduce twisted GIT quotients today

The right hand side is called the symplectic, or Hamiltonian, reduction We will see this is a general feature about affine GIT quotients. Before that, we introduce a slight variant of the affine GIT quotient.

7.2. TWISTED GIT QUOTIENT

For an affine algebraic variety X which is acted on by a reductive group G we have seen that the GIT quotient X // G is in bijective correspondence with the set of closed G-orbits.

A projective variety $X \subset \mathbf{P}^n$ has a canonical $\mathbf{Z}_{\geq 0}$ -grading on its algebra of global functions

$$A_{\bullet} = \oplus_{n \ge 0} A_n$$

where A_n is the algebra of degree *n* homogenous polynomials restricted to *X*. One can recover *X* from the graded algebra A_{\bullet} via the 'proj' construction

$$(9) X = \operatorname{Proj}(X).$$

The closed points of $\operatorname{Proj}(X)$ correspond to the set of graded ideals $J_{\bullet} \subset A_{\bullet}$ which are maximal among graded ideals not containing $A_{+} = \bigoplus_{n>0} A_{n}$.

Let us return back to the situation of a reductive group *G* acting on an affine algebraic variety *X*. Suppose that χ is a character of *G*, meaning a homomorphism $\chi: G \to \mathbb{C}^{\times}$. Define the space of χ -twisted invariant functions to be

(10)
$$\mathbf{C}[X]^{G,\chi} \stackrel{\text{def}}{=} \{ f \in \mathbf{C}[X] \mid f(g \cdot x) = \chi(g)f(x) \} \subset \mathbf{C}[X]$$

Notice that when $\chi = 1$ then this return the usual *G*-invariants, but in general $\mathbf{C}[X]^{G,\chi}$ is not an algebra.

Even though $C[X]^{G,\chi}$ is not an algebra, we obtain a canonical graded algebra by the formula

(11)
$$A_{\bullet} = \bigoplus_{n \ge 0} \mathbf{C}[X]^{G, \chi^n}.$$

Notice that $A_0 = \mathbf{C}[X]^G$ is the usual algebra of invariants functions.

Definition 7.2.1. The *twisted GIT quotient* is the quasi-projective variety

(12)
$$M /\!\!/_{\chi} G \stackrel{\text{def}}{=} \operatorname{Proj} \left(\bigoplus_{n \ge 0} \mathbf{C}[X]^{G, \chi^n} \right)$$

The canonical map $\mathbf{C}[X]^G \to \bigoplus_{n \ge 0} \mathbf{C}[X]^{G,\chi^n}$ induces a projective map (13) $\pi \colon X //_{\chi} G \to X // G.$

Consider a character χ as above. Extend the *G*-action on *X* to a *G*-action on the total space of the trivial line bundle *X* × **C** by the formula

(14)
$$g \cdot (x,\mu) = (g \cdot x, \chi(g^{-1})\mu).$$

A point $x \in X$ is called χ -*semistable* if for any $\mu \in \mathbf{C}^{\times} \subset \mathbf{C}$ the closure of the orbit of (x, μ) is disjoint from the zero section:

(15)
$$\overline{\mathbb{O}}_{(x,\mu)} \cap (X \times \{0\}) = \emptyset.$$

An equivalent way to understand semistability is the following.

2

Lemma 7.2.2. A point $x \in X$ is χ -semistable if and only if there exists an $f \in \mathbb{C}[X]^{G,\chi^n}$, for some $n \ge 1$, such that $f(x) \ne 0$.

From this characterization it is easy to see that the set of χ -semistable elements

is G-invariant.

THEOREM 7.2.3. Suppose that G is a reductive group acting on an affine variety X and let χ be a character of G. Then

1. The map $X //_{\chi} G \to X // G$ is surjective.

2. As topological spaces one has

(17)
$$X //_{\chi} G \simeq X_{\chi}^{ss} / \sim$$

where $\mathbb{O} \sim \mathbb{O}'$ iff $\overline{\mathbb{O}} \cap \overline{\mathbb{O}}' \cap X^{ss} \neq \emptyset$. 3. There is a bijection (18) $X //_{\chi} G \simeq \{ closed orbits in X^{ss} \}.$

Notice that orbits which are closed in X^{ss} may not be closed in X, so that the twisted GIT reduction has the potential to see a wider class of orbits.

Example 7.2.4. Consider the C^{\times} action on A^2 which scales each direction the same. Then we have seen that

(19) $\mathbf{A}^2/\mathbf{C}^{\times} = \{0\} \cup \mathbf{P}^1, \quad \mathbf{A}^2 // \mathbf{C}^{\times} = \{0\}.$

Let $\chi(\lambda) = \lambda$. Then

(20) $(\mathbf{A}^2)^{ss}_{\chi} = \mathbf{A}^2 \setminus \mathbf{0},$

and hence

(21)
$$\mathbf{A}^2 //_{\chi} \mathbf{C}^{\times} = \mathbf{P}^1.$$