LECTURE 7

Symplectic reduction, I

We turn to an alternative description of affine (and twisted') GIT quotients.
Let’s motivate this by considering a simple example.

7.1. REDUCTIVE VERSUS UNITARY
Let V be a vector space equipped with a hermitian metric. Let G C U(V) be a
connected closed Lie group acting by unitary transformations on V.

Warning: In this section G denotes a real compact Lie group. We will denote its
complex form by G€.

We have defined the affine GIT quotient
(1) V // G€ = SpecC[V]°".

The underlying space consists of the set of closed G¢-orbits. Let’s consider the
example

) V = End(C")
with ¢ € G = U(n) acting by conjugation ¢- B = ¢ 'Bg. In this case, G¢ =

GL(n,C), and we have identified the closed GL(n, C)-orbits: a matrix has a closed
GC-orbit if and only if it is diagonalizable. Hence

3) V // G¢ = End(C") // GL(n,C) ~ C".
On the other hand, a matrix B satisfies
4) [B,B"] =0

if and only if it can be diagonalized by a unitary matrix (to see this use Schur’s
lemma which states that any complex square matrix is unitary equivalent to an
upper triangular matrix). Thus there is a bijection

(5) End(C") // GL(n,C) ~ {B € End(C") | [B,BT] = 0}/U(n).
If we let
(6) p:V—g'

be 1(B) = 1[B, B'] (where we use the hermitian form to identify g = Lie(U(n))
with g*) then we can rewrite this as

(7) V // GE ~u1(0)/U(n).

IWe introduce twisted GIT quotients today
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The right hand side is called the symplectic, or Hamiltonian, reduction We will see
this is a general feature about affine GIT quotients. Before that, we introduce a
slight variant of the affine GIT quotient.

7.2. TWISTED GIT QUOTIENT

For an affine algebraic variety X which is acted on by a reductive group G we
have seen that the GIT quotient X // G is in bijective correspondence with the set
of closed G-orbits.

A projective variety X C P" has a canonical Z>-grading on its algebra of global
functions

(8) Ae = @nzoAn

where A, is the algebra of degree n homogenous polynomials restricted to X. One
can recover X from the graded algebra A, via the “proj” construction

) X = Proj(X).

The closed points of Proj(X) correspond to the set of graded ideals Jo C A, which
are maximal among graded ideals not containing A = @,~0A.

Let us return back to the situation of a reductive group G acting on an affine
algebraic variety X. Suppose that yx is a character of G, meaning a homomorphism
Xx: G — C*. Define the space of x-twisted invariant functions to be

def
(10) CIX]* = {f € CIX] | f(g-x) = x(8)f(x)} € CIX].
Notice that when x = 1 then this return the usual G-invariants, but in general
C[X]% is not an algebra.

Even though C[X]%X is not an algebra, we obtain a canonical graded algebra
by the formula

(11) Au = ®p=oC[X] X"
Notice that Ag = C[X]© is the usual algebra of invariants functions.

Definition 7.2.1. The twisted GIT quotient is the quasi-projective variety
(12) M // G % Proj (@QOC[X] GfX")

The canonical map C[X]® — ®,>0C[X]°"" induces a projective map
(13) X /G X //G.

Consider a character x as above. Extend the G-action on X to a G-action on the
total space of the trivial line bundle X x C by the formula

(14) g (p) = (8- xx(g " n)-
A point x € X is called x-semistable if for any u € C* C C the closure of the orbit
of (x, ) is disjoint from the zero section:

(15) 6(x,y) N (X X {0}) = Q.

An equivalent way to understand semistability is the following.
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Lemma 7.2.2. A point x € X is x-semistable if and only if there exists an f € C[X]%X",
for some n > 1, such that f(x) # 0.

From this characterization it is easy to see that the set of y-semistable elements
(16) Xy cX
is G-invariant.
THEOREM 7.2.3. Suppose that G is a reductive group acting on an affine variety X
and let x be a character of G. Then
1. The map X // G — X // G is surjective.
2. As topological spaces one has
(17) XNy G= XY/ ~
where O ~ O/ iﬁ‘@ﬂﬁ/ N X% £ Q.
3. There is a bijection
(18) X // x G ~ {closed orbits in X**}.
Notice that orbits which are closed in X** may not be closed in X, so that the
twisted GIT reduction has the potential to see a wider class of orbits.

Example 7.2.4. Consider the C* action on A% which scales each direction the same.
Then we have seen that

(19) A?/C* ={0}uP!, A%/ C*={0}.
Let x(A) = A. Then

(20) (A%)Y = A%\,

and hence

(21) A%/, C*=PL
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