
LECTURE 1

Symplectic reduction, II

1.1. RESOLUTION OF SINGULARITIES

Recall that quotients are the most well-behaved when the group action is free.
We say a point x ∈ X is regular if the orbit Ox is closed and the stabilizer Gx is
trivial. The set of regular elements Xreg ⊂ X is open and G-invariant. Moreover,
we can consider the set of regular orbits

(1) (X // G)reg ⊂ X // G.

From the Luna slice theorem it follows that the set of regular points and the set of
regular orbits (X // G)reg is open in X // G.

THEOREM 1.1.1. The following hold.

1. If x ∈ Xreg then x is χ-stable for any character χ.
2. The subspace of regular orbits (X // G)reg is nonsingular. Let π : X //χ G →

X // G be the canonical map, then

(2) (X //χ G)reg def
= π−1(X // G)reg

is also nonsingular and the map

(3) π : (X //χ G)reg → (X // G)reg

is an isomorphism.

Recall that a morphism π : X → Y is called a resolution of singularities if X is
non-singular and π is proper and birational. Being birational means that there ex-
ists an open dense subset Y0 ⊂ Y such that π−1(Y0) is dense in X and the restriction
π : π−1(Y0)→ Y0 is an isomorphism.

As a consequence of the twisted GIT theorem above we have the following
result on resolutions of singularities.

Corollary 1.1.2. Suppose that Xreg is nonempty and that X //χ G is nonsingular and
connected. Then

(4) π : X //χ G → X // G

is a resolution of singularities.

PROOF. By the theorem we see that (X //χ G)reg is nonempty and open in X //χ

G. �
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1.2. TYPE A1 SINGULARITY

Consider the affine subvariety

(5) X def
= {(i, j) | ij = 0} ⊂ (C2)∗ × C2 ' C4.

There is an action of C× on X defined by

(6) λ · (i, j) = (λi, λ−1 j).

We first consider the affine GIT quotient X // C×.

Let End0(C2) ⊂ End(C2) denote the three-dimensional vector space of trace-
less 2× 2 matrices. Every such matrix has the form

(7) A =

(
a b
c −a

)
where a, b, c ∈ C.

Lemma 1.2.1. Let

(8) Q = {A | det(A) = 0} ⊂ End0(C2)

be the singular quadric defined by the equation

(9) a2 + bc = 0

in A3 = Spec C[a, b, c]. The map

(10) Φ : X // C× '−→ Q

defined by Φ(i, j) = ji is an isomorphism of affine varieties.

PROOF. It is easy to see that Φ̃ : X → Q is well-defined since the condition ij =
0 implies that tr(ji) = det(ji) = 0. Clearly Φ̃ descends to the map Φ : X // C× → Q.
The inverse sends a 2× 2 matrix

(11) A =

(
a b
c −a

)
∈ Q

to the pair [(iA, jA)] where iA =
(
x y

)
and jA =

(
z w

)t. If a = 0 then either
b or c must be zero; in the case b = 0 then we set x = 0, y = 1, z = c, w = 0.
It is easy to see that this is well-defined up to the C× action. If a 6= 0 then set
x = a, y = b, z = 1, w = c/a. �

Points in X with zero stabilizer are those where both i, j are nonzero. This is
equivalent to the condition that ji 6= 0. Thus

(12) (X // C×)reg ' Q \ {0}.
This is certainly a nonsingular variety.

Let’s now consider the twisted GIT quotient. For the character let’s take the
identity morphism χ = 1 : C× → C×. Suppose that (i, j; µ) ∈ X × C thought of as
elements of the trivial line bundle over X. Then using the action in (??) we have,
for λ ∈ C×

(13) λ · (i, j; µ) = (λi, λ−1 j; λ−1µ).



1.3. SYMPLECTIC ACTIONS 3

Notice that if j = 0 and i 6= 0, µ 6= 0 then

(14) O(i,0;µ) = {(a, 0; α) | a 6= 0, α 6= 0} ⊂ X× C.

Thus (i, 0) is not a semi-stable point. Conversely we see that as long as j 6= 0 then
the point (i, j) is semi-stable.

Proposition 1.2.2. There is an isomorphism

(15) X //χ C× ' T∗P1.

PROOF. From the characterization of semi-stable elements we see that

(16) X //χ C× = {(L, i) | L ⊂ C2 line, i|L = 0}.

Thus, there is a canonical map X //χ C× → P1 defined by (L, i) 7→ L. This map
endows X //χ C× with the structure of a line bundle over P1. We will identify this
line bundle.

Let L ⊂ C2 be a line. A choice of a nonzero vector v ∈ L determines an isomor-
phism TLP1 'v C2/L. Hence

(17) T∗LP1 ' {i : C2 → L | i|L = 0}.
This isomorphism is independent of the choice of nonzero v ∈ L. Thus X //χ C× '
T∗P1. �

From this discussion we conclude that there is a resolution of singularities

(18) π : T∗P1 → Q.

This resolution is a special case of the so-called Springer resolution which we will
discuss next time.

1.3. SYMPLECTIC ACTIONS

Let (M, ω) be a symplectic manifold and suppose G is acting on M.

• If M is a smooth symplectic manifold then we assume that G is a real Lie
group and the action is smooth.
• If M is a symplectic algebraic variety then we assume that G is a linear

algebrac group acting algebraically.

The G-action is symplectic if it preserves the symplectic form; that is for every
g ∈ G the corresponding diffeomorphism φg satisfies φ∗gω = ω. Infinitesimally, this
means that for every ξ ∈ g = Lie(G) the corresponding vector field Xξ ∈ Vect(M)
satisfies

(19) LXξ
ω = 0.

Such vector fields are called symplectic vector fields; the space of all symplectic
vector fields Vectω(M) ⊂ Vect(M) is a sub Lie algebra of the Lie algebra of all
smooth vector fields. So, a symplectic action ρ of G on M determines a map of Lie
algebras

(20) Dρ : g→ Vectω(M).
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Locally, in the C∞ world, every symplectic vector field is determined by a func-
tion. Indeed the symplectic form determines an isomorphism of Vectω(M) with the
space of closed one-forms Ω1,cl(M). But, by the C∞-Poincaré lemma, locally every
closed one-form is exact. So, given a symplectic vector field ξ we can locally find a
function H ∈ C∞(M) such that

(21) ξ = XH

where XH = ω−1(dH) is the Hamiltonian vector field corresponding to H.

The symplectic form ω determines a Poisson bracket {−,−} on the commuta-
tive algebra of functions. The map

(22) {−,−} : C∞(M)→ Vectω(M)

is a map of Lie algebras. Every constant function is sent to the zero vector field.
Using this, one can show that there is a central extension of Lie algebras

(23) 0→ C→ C∞(M)→ Vectω(M)→ 0.

This extension may not be split.

Definition 1.3.1. A symplectic action ρ of G on M is Hamiltonian if there exists a
G-equivariant map

(24) µ : M→ g∗

such that

(1) For any a ∈ g the function

(25) Ha(x) = 〈µ(x), a〉

is a Hamiltonian function for the vector field ξa = Dρ(a).
(2) The assignment a 7→ Ha is a map of Lie algebras g→ C∞(M).

Example 1.3.2. Suppose that V is a vector space equipped with a nondegenerate
skew-symmetric bilinear form ω ∈ ∧2V∗. Thus (V, ω) is a symplectic vector space.
Suppose that G ⊂ Sp(V) acts on V in a way that preserves ω. Such an action is
always Hamiltonian. Indeed, define

(26) µ : V → g∗

by the rule

(27) 〈µ(v), a〉 = 1
2

ω(v, a · v), for all a ∈ g.

Here 〈−,−〉 denotes the canonical pairing between g and its dual.

Example 1.3.3. Suppose that N is a smooth manifold with a G-action. Then G
extends to a Hamiltonian action on T∗N with moment map defined by

(28) 〈µ(x, η), a〉g = 〈η, ξa(x)〉

where the right-hand side is the canonical pairing between one-forms and vector
fields.



1.3. SYMPLECTIC ACTIONS 5

A nice way to summarize the structure of the moment map is the following. We
have pointed out that the algebra of functions on a symplectic manifold is equipped
with a Poisson bracket. More generally, we can consider manifolds (which are not
necessarily symplectic) whose functions are equipped with a Poisson bracket—
such a manifold is a Poisson manifold. For any Lie algebra g its dual g∗, thought of
as a vector space, satisfies

(29) O(g∗) = Sym(g).

The Lie bracket [−,−] : g× g → g determines a Poisson bracket on Sym(g). Thus,
g∗ has the canonical structure of a Poisson manifold.

THEOREM 1.3.4. Let M be a symplectic manifold with a Hamiltonian G action. Then
the moment map µ : M→ g∗ is a map of Poisson manifolds.
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