LECTURE 1

Symplectic reduction, II

1.1. RESOLUTION OF SINGULARITIES

Recall that quotients are the most well-behaved when the group action is free.
We say a point x € X is regular if the orbit O, is closed and the stabilizer G, is
trivial. The set of regular elements X" C X is open and G-invariant. Moreover,
we can consider the set of regular orbits

1) (X//G)¢cX/G.

From the Luna slice theorem it follows that the set of regular points and the set of
regular orbits (X // G)™8 is openin X // G.

THEOREM 1.1.1. The following hold.

1. If x € X" then x is x-stable for any character x.
2. The subspace of regular orbits (X // G)"8 is nonsingular. Let t: X //, G —
X // G be the canonical map, then

) (X //x G)8 E n=1(X jy G)'8
is also nonsingular and the map
3) (X xG)8 = (X //G)S
is an isomorphism.
Recall that a morphism 7r: X — Y is called a resolution of singularities if X is
non-singular and 7 is proper and birational. Being birational means that there ex-

ists an open dense subset Yy C Y such that 77 1(Y)) is dense in X and the restriction
m: w1(Yy) — Yo is an isomorphism.

As a consequence of the twisted GIT theorem above we have the following
result on resolutions of singularities.

Corollary 1.1.2. Suppose that X"*3 is nonempty and that X //, G is nonsingular and
connected. Then

(4) n:X//yG—X//G

is a resolution of singularities.

PROOF. By the theorem we see that (X //, G)"8 is nonempty and openin X //
G. O
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1.2. TYPE Ay SINGULARITY

Consider the affine subvariety

) X1, ) |ij =0} C (C?)* x C? ~ C%.
There is an action of C* on X defined by
(6) A (i f) = (A, A7),

We first consider the affine GIT quotient X // C*.

Let Endy(C?) C End(C?) denote the three-dimensional vector space of trace-
less 2 x 2 matrices. Every such matrix has the form

a b
()

where a,b,c € C.
Lemma 1.2.1. Let

(8) Q={A| det(A) =0} C Endy(C?)
be the singular quadric defined by the equation

) > +bc=0

in A3 = Spec C|a, b, c|. The map

(10) d:X/C*SQ

defined by ®(i,j) = ji is an isomorphism of affine varieties.

PROOF. It is easy to see that ®: X — Q is well-defined since the condition ij =
0 implies that tr(ji) = det(ji) = 0. Clearly ® descends to the map ®: X // C* — Q.
The inverse sends a 2 x 2 matrix

(1) A:(“ b)eQ

c —a

to the pair [(ia,ja)] where iy = (x y) and j4 = (z w)t. If 2 = 0 then either
b or ¢ must be zero; in the case b = 0 thenwesetx = 0,y = 1,z = c,w = 0.
It is easy to see that this is well-defined up to the C* action. If a # 0 then set
x=ay=bz=1w=c/a. O

Points in X with zero stabilizer are those where both i, are nonzero. This is
equivalent to the condition that ji # 0. Thus

(12) (X /7€) = Q\ {0}
This is certainly a nonsingular variety.

Let’s now consider the twisted GIT quotient. For the character let’s take the
identity morphism xy = 1: C* — C*. Suppose that (i, j; 1) € X x C thought of as
elements of the trivial line bundle over X. Then using the action in (??) we have,
for A € C*

(13) A-(i, ) = (A, ATH AT ).
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Notice thatif j = 0and i # 0, 4 # 0 then
(14) Opoy) =1{(a,0;a) [a#0,a #0} C X x C.

Thus (7,0) is not a semi-stable point. Conversely we see that as long as j # 0 then
the point (i, j) is semi-stable.

Proposition 1.2.2. There is an isomorphism

(15) X //,C* ~ TP

PROOF. From the characterization of semi-stable elements we see that
(16) X //,C* ={(L,i) | L C C*line, i|. =0}.
Thus, there is a canonical map X //, C* — P! defined by (L,i) ~ L. This map

endows X //, C* with the structure of a line bundle over P!. We will identify this
line bundle.

Let L C C2be aline. A choice of a nonzero vector v € L determines an isomor-
phism T; P! ~, C2/L. Hence

(17) ;P! ~ {i: C*> — L|i|. = 0}.
This isomorphism is independent of the choice of nonzero v € L. Thus X //, C* ~
T*PL. O

From this discussion we conclude that there is a resolution of singularities
(18) m: T*P' — Q.

This resolution is a special case of the so-called Springer resolution which we will
discuss next time.

1.3. SYMPLECTIC ACTIONS

Let (M, w) be a symplectic manifold and suppose G is acting on M.

o If M is a smooth symplectic manifold then we assume that G is a real Lie
group and the action is smooth.

o If M is a symplectic algebraic variety then we assume that G is a linear
algebrac group acting algebraically.

The G-action is symplectic if it preserves the symplectic form; that is for every
g € G the corresponding diffeomorphism ¢ satisfies ¢,w = w. Infinitesimally, this
means that for every ¢ € g = Lie(G) the corresponding vector field Xz € Vect(M)
satisfies

(19) Lxéw =0.

Such vector fields are called symplectic vector fields; the space of all symplectic
vector fields Vect,,(M) C Vect(M) is a sub Lie algebra of the Lie algebra of all
smooth vector fields. So, a symplectic action p of G on M determines a map of Lie
algebras

(20) Dp: g — Vect,(M).
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Locally, in the C* world, every symplectic vector field is determined by a func-
tion. Indeed the symplectic form determines an isomorphism of Vect,, (M) with the
space of closed one-forms Q*/(M). But, by the C®-Poincaré lemma, locally every
closed one-form is exact. So, given a symplectic vector field ¢ we can locally find a
function H € C*(M) such that

(21) ¢=Xu
where Xy = w™!(dH) is the Hamiltonian vector field corresponding to H.

The symplectic form w determines a Poisson bracket {—, —} on the commuta-
tive algebra of functions. The map

(22) {—,—}: C®(M) — Vecty(M)

is a map of Lie algebras. Every constant function is sent to the zero vector field.
Using this, one can show that there is a central extension of Lie algebras

(23) 0— C— C*(M) — Vect,(M) — 0.
This extension may not be split.

Definition 1.3.1. A symplectic action p of G on M is Hamiltonian if there exists a
G-equivariant map

(24) u:M—g*
such that

(1) For any a € g the function
(25) Hq(x) = (p(x),a)

is a Hamiltonian function for the vector field ¢, = Dp(a).
(2) The assignment a — H, is a map of Lie algebras g — C*(M).

Example 1.3.2. Suppose that V is a vector space equipped with a nondegenerate
skew-symmetric bilinear form w € A2V*. Thus (V, w) is a symplectic vector space.
Suppose that G C Sp(V) acts on V in a way that preserves w. Such an action is
always Hamiltonian. Indeed, define

(26) u:V—g
by the rule
(27) (u(v),a) = %w(v,a -v), forall acg.

Here (—, —) denotes the canonical pairing between g and its dual.

Example 1.3.3. Suppose that N is a smooth manifold with a G-action. Then G
extends to a Hamiltonian action on T*N with moment map defined by

(28) (n(x,m),a)g = (n,8a(x))

where the right-hand side is the canonical pairing between one-forms and vector
fields.
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A nice way to summarize the structure of the moment map is the following. We
have pointed out that the algebra of functions on a symplectic manifold is equipped
with a Poisson bracket. More generally, we can consider manifolds (which are not
necessarily symplectic) whose functions are equipped with a Poisson bracket—
such a manifold is a Poisson manifold. For any Lie algebra g its dual g*, thought of
as a vector space, satisfies

(29) 0(g") = Sym(g).

The Lie bracket [—, —]: g X g — g determines a Poisson bracket on Sym(g). Thus,
g* has the canonical structure of a Poisson manifold.

THEOREM 1.3.4. Let M be a symplectic manifold with a Hamiltonian G action. Then
the moment map y: M — g* is a map of Poisson manifolds.



	Lecture 1. Symplectic reduction, II
	1.1. Resolution of singularities
	1.2. Type A1 singularity
	1.3. Symplectic actions


