LECTURE 1

Symplectic reduction, II

1.1. RESOLUTION OF SINGULARITIES

Recall that quotients are the most well-behaved when the group action is free. We say a point $x \in X$ is *regular* if the orbit O_x is closed and the stabilizer G_x is trivial. The set of regular elements $X^{reg} \subset X$ is open and *G*-invariant. Moreover, we can consider the set of regular orbits

(1)
$$(X // G)^{reg} \subset X // G.$$

From the Luna slice theorem it follows that the set of regular points and the set of regular orbits $(X // G)^{reg}$ is open in X // G.

THEOREM 1.1.1. The following hold.

- 1. If $x \in X^{reg}$ then x is χ -stable for any character χ .
- 2. The subspace of regular orbits $(X // G)^{reg}$ is nonsingular. Let $\pi: X //_{\chi} G \to X // G$ be the canonical map, then

(2)
$$(X //_{\chi} G)^{reg} \stackrel{\text{def}}{=} \pi^{-1} (X // G)^{reg}$$

is also nonsingular and the map

(3)
$$\pi \colon (X //_{\chi} G)^{reg} \to (X // G)^{reg}$$

is an isomorphism.

Recall that a morphism $\pi: X \to Y$ is called a resolution of singularities if X is non-singular and π is proper and birational. Being birational means that there exists an open dense subset $Y_0 \subset Y$ such that $\pi^{-1}(Y_0)$ is dense in X and the restriction $\pi: \pi^{-1}(Y_0) \to Y_0$ is an isomorphism.

As a consequence of the twisted GIT theorem above we have the following result on resolutions of singularities.

Corollary 1.1.2. Suppose that X^{reg} is nonempty and that $X //_{\chi} G$ is nonsingular and connected. Then

(4)
$$\pi \colon X //_{\chi} G \to X // G$$

is a resolution of singularities.

PROOF. By the theorem we see that $(X //_{\chi} G)^{reg}$ is nonempty and open in $X //_{\chi} G$.

1.2. Type A_1 singularity

Consider the affine subvariety

(5)
$$X \stackrel{\text{def}}{=} \{(i,j) \mid ij = 0\} \subset (\mathbf{C}^2)^* \times \mathbf{C}^2 \simeq \mathbf{C}^4.$$

There is an action of \mathbf{C}^{\times} on *X* defined by

(6)
$$\lambda \cdot (i,j) = (\lambda i, \lambda^{-1}j).$$

We first consider the affine GIT quotient $X // \mathbf{C}^{\times}$.

Let $\text{End}_0(\mathbb{C}^2) \subset \text{End}(\mathbb{C}^2)$ denote the three-dimensional vector space of traceless 2×2 matrices. Every such matrix has the form

(7)
$$A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$$

where $a, b, c \in \mathbf{C}$.

Lemma 1.2.1. Let

(8)
$$Q = \{A \mid \det(A) = 0\} \subset \operatorname{End}_0(\mathbf{C}^2)$$

be the singular quadric defined by the equation

$$a^2 + bc = 0$$

in $\mathbf{A}^3 = \operatorname{Spec} \mathbf{C}[a, b, c]$. The map

(10)
$$\Phi: X // \mathbf{C}^{\times} \xrightarrow{\simeq} Q$$

defined by $\Phi(i, j) = ji$ *is an isomorphism of affine varieties.*

PROOF. It is easy to see that $\tilde{\Phi}: X \to Q$ is well-defined since the condition ij = 0 implies that tr(ji) = det(ji) = 0. Clearly $\tilde{\Phi}$ descends to the map $\Phi: X // \mathbb{C}^{\times} \to Q$. The inverse sends a 2 × 2 matrix

(11)
$$A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in Q$$

to the pair $[(i_A, j_A)]$ where $i_A = (x \ y)$ and $j_A = (z \ w)^t$. If a = 0 then either b or c must be zero; in the case b = 0 then we set x = 0, y = 1, z = c, w = 0. It is easy to see that this is well-defined up to the \mathbf{C}^{\times} action. If $a \neq 0$ then set x = a, y = b, z = 1, w = c/a.

Points in X with zero stabilizer are those where both *i*, *j* are nonzero. This is equivalent to the condition that $ji \neq 0$. Thus

(12)
$$(X // \mathbf{C}^{\times})^{reg} \simeq Q \setminus \{0\}.$$

This is certainly a nonsingular variety.

Let's now consider the twisted GIT quotient. For the character let's take the identity morphism $\chi = 1: \mathbb{C}^{\times} \to \mathbb{C}^{\times}$. Suppose that $(i, j; \mu) \in X \times \mathbb{C}$ thought of as elements of the trivial line bundle over *X*. Then using the action in (??) we have, for $\lambda \in \mathbb{C}^{\times}$

(13)
$$\lambda \cdot (i, j; \mu) = (\lambda i, \lambda^{-1} j; \lambda^{-1} \mu).$$

Notice that if *j* = 0 and *i* \neq 0, $\mu \neq$ 0 then

(14)
$$\mathbb{O}_{(i,0;\mu)} = \{(a,0;\alpha) \mid a \neq 0, \alpha \neq 0\} \subset \mathbf{X} \times \mathbf{C}.$$

Thus (i, 0) is not a semi-stable point. Conversely we see that as long as $j \neq 0$ then the point (i, j) is semi-stable.

Proposition 1.2.2. There is an isomorphism

(15)
$$X //_{\chi} \mathbf{C}^{\times} \simeq \mathrm{T}^* \mathbf{P}^1.$$

PROOF. From the characterization of semi-stable elements we see that

(16)
$$X //_{\chi} \mathbf{C}^{\times} = \{ (L, i) \mid L \subset \mathbf{C}^{2} \text{ line, } i|_{L} = 0 \}$$

Thus, there is a canonical map $X //_{\chi} \mathbb{C}^{\times} \to \mathbb{P}^1$ defined by $(L, i) \mapsto L$. This map endows $X //_{\chi} \mathbb{C}^{\times}$ with the structure of a line bundle over \mathbb{P}^1 . We will identify this line bundle.

Let $L \subset \mathbf{C}^2$ be a line. A choice of a nonzero vector $v \in L$ determines an isomorphism $T_L \mathbf{P}^1 \simeq_v \mathbf{C}^2 / L$. Hence

(17)
$$\mathbf{T}_{L}^{*}\mathbf{P}^{1} \simeq \{i \colon \mathbf{C}^{2} \to L \mid i|_{L} = 0\}$$

This isomorphism is independent of the choice of nonzero $v \in L$. Thus $X //_{\chi} \mathbb{C}^{\times} \simeq \mathbb{T}^* \mathbb{P}^1$.

From this discussion we conclude that there is a resolution of singularities

(18)
$$\pi \colon \mathrm{T}^* \mathbf{P}^1 \to Q.$$

This resolution is a special case of the so-called Springer resolution which we will discuss next time.

1.3. Symplectic actions

Let (M, ω) be a symplectic manifold and suppose *G* is acting on *M*.

- If *M* is a smooth symplectic manifold then we assume that *G* is a real Lie group and the action is smooth.
- If *M* is a symplectic algebraic variety then we assume that *G* is a linear algebrac group acting algebraically.

The *G*-action is *symplectic* if it preserves the symplectic form; that is for every $g \in G$ the corresponding diffeomorphism ϕ_g satisfies $\phi_g^* \omega = \omega$. Infinitesimally, this means that for every $\xi \in \mathfrak{g} = \text{Lie}(G)$ the corresponding vector field $X_{\xi} \in \text{Vect}(M)$ satisfies

$$L_{X_z}\omega=0.$$

Such vector fields are called symplectic vector fields; the space of all symplectic vector fields $\operatorname{Vect}_{\omega}(M) \subset \operatorname{Vect}(M)$ is a sub Lie algebra of the Lie algebra of all smooth vector fields. So, a symplectic action ρ of G on M determines a map of Lie algebras

(20)
$$D\rho: \mathfrak{g} \to \operatorname{Vect}_{\omega}(M).$$

Locally, in the C^{∞} world, every symplectic vector field is determined by a function. Indeed the symplectic form determines an isomorphism of $\operatorname{Vect}_{\omega}(M)$ with the space of *closed* one-forms $\Omega^{1,cl}(M)$. But, by the C^{∞} -Poincaré lemma, locally every closed one-form is exact. So, given a symplectic vector field ξ we can locally find a function $H \in C^{\infty}(M)$ such that

(21)
$$\xi = X_H$$

where $X_H = \omega^{-1}(dH)$ is the Hamiltonian vector field corresponding to *H*.

The symplectic form ω determines a Poisson bracket $\{-, -\}$ on the commutative algebra of functions. The map

(22)
$$\{-,-\}: C^{\infty}(M) \to \operatorname{Vect}_{\omega}(M)$$

is a map of Lie algebras. Every constant function is sent to the zero vector field. Using this, one can show that there is a central extension of Lie algebras

(23)
$$0 \to \mathbf{C} \to C^{\infty}(M) \to \operatorname{Vect}_{\omega}(M) \to 0.$$

This extension may not be split.

Definition 1.3.1. A symplectic action ρ of *G* on *M* is *Hamiltonian* if there exists a *G*-equivariant map

such that

(1) For any
$$a \in \mathfrak{g}$$
 the function

(25)
$$H_a(x) = \langle \mu(x), a \rangle$$

is a Hamiltonian function for the vector field $\xi_a = D\rho(a)$. (2) The assignment $a \mapsto H_a$ is a map of Lie algebras $\mathfrak{g} \to C^{\infty}(M)$.

Example 1.3.2. Suppose that *V* is a vector space equipped with a nondegenerate skew-symmetric bilinear form $\omega \in \wedge^2 V^*$. Thus (V, ω) is a symplectic vector space. Suppose that $G \subset Sp(V)$ acts on *V* in a way that preserves ω . Such an action is always Hamiltonian. Indeed, define

by the rule

(27)
$$\langle \mu(v), a \rangle = \frac{1}{2}\omega(v, a \cdot v), \text{ for all } a \in \mathfrak{g}.$$

Here $\langle -, - \rangle$ denotes the canonical pairing between g and its dual.

Example 1.3.3. Suppose that *N* is a smooth manifold with a *G*-action. Then *G* extends to a Hamiltonian action on T^*N with moment map defined by

(28)
$$\langle \mu(x,\eta),a\rangle_{\mathfrak{g}} = \langle \eta,\xi_a(x)\rangle$$

where the right-hand side is the canonical pairing between one-forms and vector fields.

A nice way to summarize the structure of the moment map is the following. We have pointed out that the algebra of functions on a symplectic manifold is equipped with a Poisson bracket. More generally, we can consider manifolds (which are not necessarily symplectic) whose functions are equipped with a Poisson bracket—such a manifold is a Poisson manifold. For any Lie algebra g its dual g*, thought of as a vector space, satisfies

(29) $\mathcal{O}(\mathfrak{g}^*) = \operatorname{Sym}(\mathfrak{g}).$

The Lie bracket [-, -]: $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ determines a Poisson bracket on Sym(\mathfrak{g}). Thus, \mathfrak{g}^* has the canonical structure of a Poisson manifold.

THEOREM 1.3.4. Let M be a symplectic manifold with a Hamiltonian G action. Then the moment map $\mu: M \to \mathfrak{g}^*$ is a map of Poisson manifolds.