LECTURE 3

Symplectic geometry, III

In this lecture we introduce the important construction of Hamiltonian reduction of a Hamiltonian action on a symplectic manifold.

3.1. HAMILTONIAN ACTIONS

Last time we built up towards the following definition.

Definition 3.1.1. A symplectic action ρ of *G* on *M* is *Hamiltonian* if there exists a *G*-equivariant map

(1)
$$\mu: M \to \mathfrak{g}^*$$

such that

(1) For any $a \in \mathfrak{g}$ the function

(2)
$$H_a(x) = \langle \mu(x), a \rangle$$

is a Hamiltonian function for the vector field $\xi_a = D\rho(a)$.

(2) The assignment $a \mapsto H_a$ is a map of Lie algebras $\mathfrak{g} \to C^{\infty}(M)$.

Example 3.1.2. Suppose that *V* is a vector space equipped with a nondegenerate skew-symmetric bilinear form $\omega \in \wedge^2 V^*$. Thus (V, ω) is a symplectic vector space. Suppose that $G \subset Sp(V)$ acts on *V* in a way that preserves ω . Such an action is always Hamiltonian. Indeed, define

$$\mu: V \to \mathfrak{g}^*$$

by the rule

(4)
$$\langle \mu(v), a \rangle = \frac{1}{2} \omega(v, a \cdot v), \text{ for all } a \in \mathfrak{g}.$$

Here $\langle -, - \rangle$ denotes the canonical pairing between g and its dual.

Example 3.1.3. Suppose that *N* is a smooth manifold with a *G*-action. Then *G* extends to a Hamiltonian action on T^*N with moment map defined by

(5)
$$\langle \mu(x,\eta),a\rangle_{\mathfrak{g}} = \langle \eta,\xi_a(x)\rangle$$

where the right-hand side is the canonical pairing between one-forms and vector fields.

Example 3.1.4. Let *G* be a linear algebraic group and $P \subset G$ a closed subgroup. Consider the variety X = G/P. There is a canonical isomorphism $T_x X = g/Ad_x \cdot p$ where p = LieP. Thus

(6)
$$T^*X = \{(x,\lambda) \mid \lambda \in \mathrm{Ad}_x^* \cdot \mathfrak{p}^\perp\} \subset X \times \mathfrak{g}^*$$

where $\mathfrak{p}^{\perp} = \{\lambda \in \mathfrak{g}^* \mid \lambda|_{\mathfrak{p}} = 0\}$ and $\mathrm{Ad}^* \colon G \times \mathfrak{g}^* \to \mathfrak{g}^*$ denotes the coadjoint action.

Consider the left action of *G* on X = G/P. This extends to a Hamiltonian action of *G* on T^{*}X with moment map

(7)
$$\mu(x,\lambda) = \lambda.$$

A nice way to summarize the structure of the moment map is the following. We have pointed out that the algebra of functions on a symplectic manifold is equipped with a Poisson bracket. More generally, we can consider manifolds (which are not necessarily symplectic) whose functions are equipped with a Poisson bracket—such a manifold is a Poisson manifold. For any Lie algebra g its dual g*, thought of as a vector space, satisfies

(8)
$$\mathcal{O}(\mathfrak{g}^*) = \operatorname{Sym}(\mathfrak{g}).$$

The Lie bracket [-, -]: $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ determines a Poisson bracket on Sym(\mathfrak{g}). Thus, \mathfrak{g}^* has the canonical structure of a Poisson manifold.

THEOREM 3.1.5. Let M be a symplectic manifold with a Hamiltonian G action. Then the moment map $\mu: M \to g^*$ is a map of Poisson manifolds.

3.2. HAMILTONIAN REDUCTION

Given a Hamiltonian *G* action on a symplectic manifold *M*, a natural question to ask is in what sense the quotient M/G is symplectic. Even if M/G is a smooth manifold it may not be the case that it is symplectic. For symplectic *G*-action there is a more refined procedure to produce a quotient which is symplectic (assuming it is a manifold). Let *G* be a real Lie group acting on a smooth manifold *M*.

THEOREM 3.2.1. Suppose that M is symplectic with a proper Hamiltonian G-action with moment map $\mu: M \to \mathfrak{g}^*$. Let $p \in \mathfrak{g}^*$ such that

- *p* is a regular value of μ , so $\mu^{-1}(p)$ is a smooth submanifold of *M*.
- The stabilizer $G_p \subset G$ of p acts freely on $\mu^{-1}(p)$ so that $\mu^{-1}(p)/G_p = \mu^{-1}(\mathbb{O}_p)/G$ is a smooth manifold.

Then $\mu^{-1}(p)/G_p$ *has the canonical structure of a symplectic manifold compatible with the symplectic structure on M.*

As a corollary we see that if *G* acts freely on *M* then $\mu^{-1}(0)/G$ has the canonical structure of a smooth symplectic manifold.

Example 3.2.2. Suppose that *G* acts on a smooth manifold *N* in a free and proper way and let μ : $T^*N \rightarrow \mathfrak{g}$ be the moment map from example 3.1.3. Then there is a symplectomorphism

(9)
$$T^*(N/G) \simeq \mu^{-1}(0)/G.$$

We now make the connection to the GIT quotient, which we recall makes sense in the affine algebro-geometric setting. Suppose that G is a reductive algebraic group acting on a nonsingular affine algebraic variety X. The cotangent bundle T^{*}X is an affine algebraic variety equipped with a Hamiltonian action by *G*. Thus, there is an algebraic moment map μ : T^{*}X $\rightarrow \mathfrak{g}^*$ and $\mu^{-1}(0)$ is an affine algebraic variety which is equipped with a *G*-action.

THEOREM 3.2.3. Suppose the G-action on the affine algebraic variety X is free so that X/G = X //G is a non-singular affine algebraic variety. Then for any G-invariant $p \in \mathfrak{g}^*$ the space $\mu^{-1}(p)/G$ is symplectic and there is a canonical symplectomorphism

(10)
$$T^*(X/G) \simeq \mu^{-1}(0)/G.$$

In the above theorem we assume, importantly, that the action is free so that the GIT quotient agrees with the set-theoretic quotient. If the action is not free then generally speaking X // G and $\mu^{-1}(0)/G$ are singular algebraic algebraic varieties. Nevertheless, in general $\mu^{-1}(0) \subset X$ is an affine algebraic variety and we can contemplate the GIT quotient

(11)
$$\mathfrak{M}_0 \stackrel{\text{def}}{=} \mu^{-1}(0) /\!\!/ G$$

More generally, for any character $\chi: G \to \mathbf{C}^{\times}$ we have the twisted GIT quotient

(12)
$$\mathfrak{M}_{\chi} \stackrel{\text{def}}{=} \mu^{-1}(0) /\!/_{\chi} G.$$

By definition there is a proper map $\pi: \mathcal{M}_{\chi} \to \mathcal{M}_0$.

THEOREM 3.2.4. Let X be a smooth affine algebraic variety and let G be a reductive algebra group acting on X. Then

- (1) For any character χ the variety \mathfrak{M}_{χ} is Poisson. The morphism $\pi: \mathfrak{M}_{\chi} \to \mathfrak{M}_0$ is *Poisson*.
- (2) Let X^s be the χ -stable points so that $X^s // X //_{\chi} G$ is a smooth subvariety. Also

(13)
$$\mathcal{M}_{\chi}^{s} \stackrel{\text{def}}{=} (\mu^{-1}(0)^{s}) /\!\!/ G \subset \mathcal{M}_{\chi}$$

is smooth. Then \mathcal{M}^{s}_{χ} *is symplectic and contains* $T^{*}(X^{s} // G)$ *.*