
LECTURE 1

The Hilbert scheme as a reduction

Recall the following example. Equip V = End(Cn) with a Kähler structure
induced from the standard one on Cn. The Hermitian inner product is simply
(x, y) = tr(xy†) and the symplectic form is ω(x, y) = Im(x, y). Consider the adjoint
action through unitary matrices

(1) End(Cn) 3 x 7→ g−1xg, g ∈ U(n).

The corresponding moment map is simply

(2) µR(x) =
i
2
[x, x†].

The Kempf–Ness theorem gives a natural isomorphism

(3) µ−1(0)/U(n) ' End(Cn) // GL(n, C).

We have seen that the right hand side is isomorphic to Cn; the closed orbits are
the diagonalizable matrices and Cn consists of the sets of eigenvalues. The right
hand side is the quotient by U(n) of matrices satisfying [x, x†] = 0. Any normal
matrix can be diagonalized by a unitary matrix. This is an explicit example of the
Kempf–Ness theorem.

1.1. THE SYMMETRIC PRODUCT

Let V, W be complex vector spaces of dimension n and 1 respectively. Let

(4) Hn,1
def
= End(V)⊕ End(V)⊕Hom(W, V)⊕Hom(V, W).

There is a natural GL(V, C) action on Hn,1 defined by

(5) (B1, B2, i, j) 7→ (g−1B1g, g−1B2g, g−1i, jg), g ∈ GL(V, C).

Notice that

(6) Hn,1 = T∗ End(V)⊕ T∗Hom(W, V).

In particular, Hn,1 is naturally a complex symplectic vector space. The GL(V, C) ac-
tion is Hamiltonian with respect to this symplectic structure and the (holomorphic)
moment map

(7) µC : Hn,1 → gl(V)∗ ' gl(V)

is

(8) µC(B1, B2, i.j) = [B1, B2] + ij.
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By our work in previous lectures we have identified the nth symmetric product of
C2 with the GIT Hamiltonian reduction

(9) SnC2 ' µ−1
C (0) // GL(V, C).

Via this description it makes it manifest that SnCn is equipped with a Poisson struc-
ture. (Describe it explicitly.)

Equip V, W with Hermitian inner products so that the vector space is equipped
with an induced Hermitian inner product. We have a natural action of g ∈ U(V) '
U(n) on Hn,1 defined by restriction of the action (5). The real moment map for this
unitary action is

(10) µ1(B1, B2, i, j) =
i
2

(
[B1, B†

1 ] + [B2, B†
2 ] + ii† − j† j

)
.

Thus, by the Kempf–Ness theorem we have another description of SnC2

(11) µ−1
C (0) // GL(n, C) ' SnC2 '

(
µ−1

1 (0) ∩ µ−1
C (0)

)
/U(n).

1.2. HILBERT SCHEME

Consider the complex vector space Hn,1 equipped with its GL(n, C) action. De-
fine the character χ : GL(n, C)→ C× by

(12) χ(g) = (det g)l

where l is an arbitrary positive integer.

Proposition 1.2.1. There is an isomorphism

(13) Hilbn(C2) ' µ−1
C (0) //χ GL(n).

This result follows from the following lemma asserting that the familiar sta-
bility condition that we originally used in the description of the Hilbert scheme
translates to the statement that orbits are closed in the semi-stable locus.

Lemma 1.2.2. The tuple (B1, B2, i, j) satisfies the stability condition if and only if it is
χ-semi stable.

PROOF. Recall that the stability condition says that there is no subspace S ⊂ V
such that

• S is invariant for B1, B2.
• im(i) ⊂ S.

By way of contradiction let’s assume that there exists such an S and that

(14) G · (Bα, i, j; z) ⊂ Hn,1 × C

is closed.

As we have done before, let’s take a complementary subspace S⊥ such that
V = S⊕ S⊥. Then in this form the matrices Bα take the form

(15) Bα =

(
? ?
0 ?

)
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And i is a column vector of the form i =
(
? 0

)t. Let

(16) g(t) def
=

(
1S 0
0 t−11S⊥

)
.

Then

(17) g(t)Bαg(t)−1 =

(
? t?
0 ?

)
, g(t)i = i.

On the other hand (det g(t))−lz = tl·dim S⊥z → 0 as t → 0 since dim S⊥ > 0 by
assumption. This contradicts the fact that G · (Bα, i, j; z) is closed.

Next suppose that the stability condition holds. By contradiction suppose that
G · (Bα, i, j; z) is not closed.

�

To get a similar description of the Hilbert scheme as a Kähler quotient we need
to discuss a small generalization of the Kempf–Ness theorem where the affine GIT
quotient is replaced by the twisted GIT quotient.

Suppose K is a compact Lie group with complexification G both acting in an
appropriate way on a Hermitian vector space V. Let χ : G → C× be a character
which restricts to a character χR : K → U(1). We identify u(1) ' iR. Then, the
variant of the Kempf–Ness theorem is an isomorphism

(18) µ−1
R (i dχR)/K ' V //χ G

where we view the derivative of χR at the identity as an element dχR ∈ ik∗. Ap-
plied to the Hilbert scheme example we then have a sequence of isomorphisms

(19) µ−1
C (0) //χ GL(n, C) ' Hilbn(C2) '

(
µ−1

1 (i dχR) ∩ µ−1
C (0)

)
/U(n).

Recall that the Hilbert–Chow morphism is a resolution of singularities π : Hilbn(C2)→
Sn(C2). This morphism can be identified with the canonical map from the twisted/projective
GIT quotient to the affine GIT quotient

(20) Hilbn(C2) ' µ−1
C (0) //χ GL(n, C)

π−→ µ−1
C (0) // GL(n, C) ' Sn(C2).

1.3. HYPERKÄHLER QUOTIENTS

In this section we will survey the result that the Hilbert scheme on C2, and
more generally the moduli of torsion-free sheaves, can be given the structure of a
hyperkähler manifold.

Recall that a Kähler manifold is a Riemannian manifold of dimension 2n with a
compatible almost complex structure I which is integrable and such that the Kähler
two-form ω is d-closed. This is equivalent to asking that the complex structure I be
parallel with respect to the Levi-Civita connection ∇I = 0. For a Kähler manifold,
the holonomy group of∇ is contained in U(n). In other words, the SO(2n) bundle
of frames admits a reduction of structure to U(n).

A hyperKähler manifold is a smooth Riemannian manifold (M, g) with a triple
of almost complex structures I, J,K satisfying
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(1) Each I, J,K preserve the metric g.
(2) I, J,K satisfy the quaternionic relations I2 = J2 = K2 = IJK = −1.
(3) I, J,K are parallel with respect to the Levi-Civita connection ∇I = ∇J =
∇K = 0.

These conditions imply that the holonomy group of ∇ is contained in the real
symplectic group Sp(n) ⊂ SO(4n). Each pair (g, I), (g, J), (g,K) defines a Kähler
structure with Kähler forms we denote by ωI, ωJ, ωK. If we fix the complex struc-
ture I then the combination

(21) ωC
def
= ωJ + iωK

is holomorphic. Meaning ωC is Hodge type (2, 0) and is ∂I-closed.

Suppose that K is a compact real Lie group acting on a hyperKähler manifold
X in a way that preserves I, J,K, g.

Definition 1.3.1. A map

(22) µ : X → R3 ⊗ k∗

is a hyperKähler moment map if

(1) µ is K-equivariant.
(2) If µ = (µI, µJ, µK) then

(23) 〈dµI(v), a〉 = ωI(ξa, v)

for any v ∈ TX, a ∈ k and similarly for J,K.

Suppose that X is equipped with such a moment map.

THEOREM 1.3.2 ([Hitchin]). Suppose ζ1, ζ2, ζ3 ∈ k∗ are Ad-invariant elements.
Then if ζ = (ζ1, ζ2, ζ3) the set µ−1(ζ) ⊂ X is K-invariant.

If we assume that the K-action on µ−1(ζ) is free then the quotient space µ−1(ζ)/K is
a smooth manifold equipped with a hyperKähler structure compatible with the one on X.

The resulting space µ−1(ζ)/K is called the hyperKähler quotient and is some-
times denoted

(24) X///K def
= µ−1(ζ)/K.
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