Today we'll examine more properties of the integral.

- Suppose that f is an even function, meaning $f(-x)=f(x)$. Then for any a one has

$$
\begin{equation*}
\int_{-a}^{a} f(x) \mathrm{d} x=2 \int_{0}^{a} f(x) \mathrm{d} x \tag{193}
\end{equation*}
$$

- Suppose that g is an odd function, meaning $g(-x)=-g(x)$. Then

$$
\begin{equation*}
\int_{-a}^{a} g(x) \mathrm{d} x=0 \tag{194}
\end{equation*}
$$

Example 2.84. What is the value of

$$
\begin{equation*}
\int_{-5}^{5} \frac{x^{3}}{x^{6}+1}=? \tag{195}
\end{equation*}
$$

The average value of a continuous function f defined on a domain $[a, b]$ is

$$
\begin{equation*}
\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \tag{196}
\end{equation*}
$$

Example 2.85. Think about why this is the matches with your intuition of the average value of a linear function, like $f(x)=2 x$ on the interval $[1,4]$.

Example 2.86. Compute the average value of the function $f(x)=x^{2}$ on the interval [1,4].

Example 2.87. Compute the average value of the function $f(x)=\sin x$ on the interval $[0,2 \pi]$.

Proposition 2.88 (Mean value theorem for integrals). Suppose that f is a continuous function on $[a, b]$. Then, there exists a c with $a<c<b$ such that

$$
\begin{equation*}
f(c)=\bar{f}=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x \tag{197}
\end{equation*}
$$

Proof. Let $N(x)=\int_{a}^{x} f(t) \mathrm{d} t$ be the net area function. By the fundamental theorem of calculus this function is differentiable. Therefore, by the mean value theorem, there exists a c such that

$$
\begin{equation*}
N^{\prime}(c)=\frac{N(b)-N(a)}{b-a} \tag{198}
\end{equation*}
$$

By the fundamental theorem, the left hand side is exactly $f(c)$. The result follows.

Example 2.89. Find the value of c for the function $f(x)=x^{2}$ on $[1,4]$. That is, for which value of c is it true $f(c)=\bar{f}$?

Last time we did an example related to substitution. Let's recall it.
Suppose that $F(x)=\int f(x) \mathrm{d} x$ is an antiderivative of a function f. We can use this information to guarantee what the antiderivative of the function $g(x)=x f\left(x^{2}\right)$ is. Indeed, consider the function $G(x)=\frac{1}{2} F\left(x^{2}\right)$. Then, by chain rule

$$
\begin{equation*}
G^{\prime}(x)=\frac{1}{2} F^{\prime}\left(x^{2}\right) \cdot 2 x=x f\left(x^{2}\right) . \tag{199}
\end{equation*}
$$

Thus $G(x)=F\left(x^{2}\right)$ is an antiderivative for $g(x)=x f\left(x^{2}\right)$.
Another way to state this computation is

$$
\begin{equation*}
\int f\left(x^{2}\right) x \mathrm{~d} x=\frac{1}{2} \int f\left(x^{2}\right) \mathrm{d}\left(x^{2}\right)=\frac{1}{2} \int f(u) \mathrm{d} u \tag{200}
\end{equation*}
$$

where we are using the notation $u(x)=x^{2}$ and

$$
\begin{equation*}
\mathrm{d} u=\frac{\mathrm{d} u}{\mathrm{~d} x} \mathrm{~d} x \tag{201}
\end{equation*}
$$

This 'substitution rule' is like the anti derivative version of the chain rule. If $u=u(x)$ is a general function of a variable x then we heuristically write

$$
\begin{equation*}
\mathrm{d} u=\frac{\mathrm{d} u}{\mathrm{~d} x} \mathrm{~d} x \tag{202}
\end{equation*}
$$

If $f=f(u)$ is a function of u then obtain

$$
\begin{equation*}
f(u) \mathrm{d} u=f(u(x)) \frac{\mathrm{d} u}{\mathrm{~d} x} \mathrm{~d} x . \tag{203}
\end{equation*}
$$

On the left hand side we think of everything as a function of the variable u, whereas eon the right hand side we think of everything as a function of x. This formula leads to the integral equation

$$
\begin{equation*}
\int f(u) \mathrm{d} u=\int f(u(x)) \frac{\mathrm{d} u}{\mathrm{~d} x} \mathrm{~d} x . \tag{204}
\end{equation*}
$$

Here are the steps to perform substitution to evaluate $\int g(x) \mathrm{d} x$.

- Locate a function $u=u(x)$ whose derivative $\frac{\mathrm{d} u}{\mathrm{~d} x}$ is easy to compute which satisfies

$$
\begin{equation*}
g(x)=f(u(x)) \frac{\mathrm{d} u}{\mathrm{~d} x} \tag{205}
\end{equation*}
$$

for some function $f=f(u)$.

- Use the substitution rule to express $\int g(x) \mathrm{d} x$ as

$$
\begin{equation*}
\int g(x) \mathrm{d} x=\int f(u) \mathrm{d} u \tag{206}
\end{equation*}
$$

where $f(u)$ is an easier function to integrate.

- If $\int f(u) \mathrm{d} u=F(u)+C$ is an anti derivative of f, then to finish simply substitute $u=u(x)$

$$
\begin{equation*}
\int g(x) \mathrm{d} x=F(u(x))+C . \tag{207}
\end{equation*}
$$

Example 2.90. Find

$$
\int \frac{x}{1+x^{2}} \mathrm{~d} x
$$

Example 2.91. Find

$$
\int x^{3} \sin \left(x^{4}\right) \mathrm{d} x
$$

