Given a differentiable function $g(x)$ we know we can consider its derivative $g^{\prime}(x)$.

- Question: Given a function $f(x)$, does there exist a function differentiable function $F(x)$ such that

$$
\begin{equation*}
F^{\prime}(x)=f(x) \quad ? \tag{138}
\end{equation*}
$$

If we can find such a function $F(x)$ we call it an antiderivative of $f(x)$.
Example 2.57. What is an antiderivative of the function $f(x)=1$? How about the function $f(x)=x$? In general, what is an antiderivative of $f(x)=x^{n}$?

- Question: How unique is an antiderivative? That is, if $F(x), G(x)$ are two antiderivatives of $f(x)$, then how close are $F(x)$ and $G(x)$ to being the same?

Theorem 2.58. Suppose that $F(x), G(x)$ are two antiderivatives of $f(x)$. Then there exists a constant C such that

$$
\begin{equation*}
F(x)=G(x)+C . \tag{139}
\end{equation*}
$$

Proof. We showed in the Mean Value Theorem section that if $f^{\prime}(x)=g^{\prime}(x)$ then $f(x)=g(x)+C$ for some constant C. Apply this to $f=F$ and $g=G$.

Example 2.59. Find all antiderivatives of $\frac{1}{x}$. Next, find all antiderivatives of $\cos (2 x)$.

Example 2.60. Are the following statements true?

$$
\begin{aligned}
\left(\sin ^{2} x\right)^{\prime} & =2 \sin x \cos x \\
\left(-\cos ^{2} x\right)^{\prime} & =2 \sin x \cos x ?
\end{aligned}
$$

If so, what does this say about the antiderivatives of $2 \sin x \cos x$?

We will introduce the following symbol called the integral. We call

$$
\begin{equation*}
\int f(x) \mathrm{d} x \tag{140}
\end{equation*}
$$

the indefinite integral of $f(x)$. It is meant to represent all possible antiderivatives of $f(x)$. Thus, for example

$$
\begin{equation*}
\int x \mathrm{~d} x=\frac{1}{2} x^{2}+C \tag{141}
\end{equation*}
$$

where C is an arbitrary constant.

- When we say 'evaluate' $\int f(x) \mathrm{d} x$, we mean to find all possible antiderivatives of the function $f(x)$.
Example 2.61. Evaluate $\int \frac{\mathrm{d} x}{1+x^{2}}$. How about $\int \frac{\mathrm{d} x}{2+x^{2}}$?

A (first-order) differential equation is an equation of the form

$$
\begin{equation*}
f^{\prime}(x)=g(x) \tag{142}
\end{equation*}
$$

or if $y=f(x)$ this reads

$$
\begin{equation*}
y^{\prime}=g(x) \tag{143}
\end{equation*}
$$

A typical problem is to find solutions $y=f(x)$ to this equation. As we just saw this is no uniquely determined. But, if we impose some extra conditions then we can solve for $y=f(x)$ uniquely.
Example 2.62. Find the function $y=f(x)$ defined for $x>0$ which solves the following equation

$$
\begin{equation*}
y^{\prime}=3 x^{2}+\sqrt{x} \tag{144}
\end{equation*}
$$

and satisfies $f(1)=0$.
Such a problem is called an initial value problem.

