NOVEMBER 14, 2022

Given a differentiable function g(x) we know we can consider its derivative g'(x).

• Question: Given a function f(x), does there exist a function differentiable function F(x) such that

(138) F'(x) = f(x) ?

If we can find such a function F(x) we call it an *antiderivative* of f(x).

Example 2.57. What is an antiderivative of the function f(x) = 1? How about the function f(x) = x? In general, what is an antiderivative of $f(x) = x^n$?

• Question: How unique is an antiderivative? That is, if F(x), G(x) are two antiderivatives of f(x), then how close are F(x) and G(x) to being the same?

Theorem 2.58. Suppose that F(x), G(x) are two antiderivatives of f(x). Then there exists a constant C such that

(139)
$$F(x) = G(x) + C.$$

Proof. We showed in the Mean Value Theorem section that if f'(x) = g'(x) then f(x) = g(x) + C for some constant *C*. Apply this to f = F and g = G.

Example 2.59. Find all antiderivatives of $\frac{1}{x}$. Next, find all antiderivatives of $\cos(2x)$.

Example 2.60. Are the following statements true?

$$(\sin^2 x)' = 2\sin x \cos x$$
$$(-\cos^2 x)' = 2\sin x \cos x?$$

If so, what does this say about the antiderivatives of $2 \sin x \cos x$?

We will introduce the following symbol called the integral. We call

(140)
$$\int f(x) \mathrm{d}x$$

the *indefinite integral* of f(x). It is meant to represent all possible antiderivatives of f(x). Thus, for example

(141)
$$\int x \mathrm{d}x = \frac{1}{2}x^2 + C$$

where *C* is an arbitrary constant.

• When we say 'evaluate' $\int f(x)dx$, we mean to find all possible antiderivatives of the function f(x).

Example 2.61. Evaluate $\int \frac{dx}{1+x^2}$. How about $\int \frac{dx}{2+x^2}$?

A (first-order) differential equation is an equation of the form

$$(142) f'(x) = g(x)$$

or if y = f(x) this reads

$$(143) y' = g(x)$$

A typical problem is to find solutions y = f(x) to this equation. As we just saw this is no uniquely determined. But, if we impose some extra conditions then we can solve for y = f(x) uniquely.

Example 2.62. Find the function y = f(x) defined for x > 0 which solves the following equation

$$(144) y' = 3x^2 + \sqrt{x}$$

and satisfies f(1) = 0.

Such a problem is called an *initial value problem*.