Last time we introduced the concept of net area. Let's recall the precise definition.
Definition 2.67. Let f be a continuous function and consider the region which is bounded by the x-axis and the curve of the graph $y=f(x)$ between $x=a$ and $x=b$. The net area is the area of the region above the x-axis minus the area below the x-axis.

Example 2.68. Consider the function $f(x)=2 x-2$. What is the net area determined by $y=f(x)$ between $x=0$ and $x=2$? What about the net area between $x=0$ and $x=3$? (Use geometry to obtain the exact answer, do not use a Riemann sum approximation.)

Definition 2.69. Consider a function f defined on an interval $[a, b]$ The definite integral (if it exists)

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x \tag{154}
\end{equation*}
$$

is the net area determined by $y=f(x)$ between $x=a$ and $x=b$.
Remark 2.70. This is actually more of a theorem than a definition, but the definition of the definite integral is a little more involved than what we will be focusing on in this class. We'll give a more precise definition in terms of Riemann sums at the end of this lecture.

The existence is guaranteed in two situations.

- the function f is continuous on the interval $[a, b]$, or
- the function f is bounded with only finitely many discontinuities.

Example 2.71. Consider the function $f(x)=\sqrt{9-x^{2}}$. Use geometry to compute

$$
\begin{equation*}
\int_{0}^{3} \sqrt{9-x^{2}} \mathrm{~d} x \tag{155}
\end{equation*}
$$

Example 2.72. Using geometry evaluate

$$
\begin{equation*}
\int_{-2}^{4} \sqrt{8+2 x-x^{2}} \mathrm{~d} x \tag{156}
\end{equation*}
$$

Example 2.73. This example is about definite integrals of even and odd functions.

- Suppose that $f(x)$ is an even function and $\int_{0}^{2} f(x) \mathrm{d} x=7$. Evaluate

$$
\begin{equation*}
\int_{-2}^{2} f(x) \mathrm{d} x . \tag{157}
\end{equation*}
$$

- Suppose that $g(x)$ is an odd function. Evaluate

$$
\begin{equation*}
\int_{-2}^{2} g(x) \mathrm{d} x \tag{158}
\end{equation*}
$$

In general, what can you infer about integrals of even/odd functions around intervals that are symmetric about the y-axis?

Let's turn to a precise definition of the definite integral which uses Riemann sums. Recall that the Riemann sum approximating the net area of a function f between $x=a$ and $x=b$ can be written as

$$
\begin{equation*}
f\left(x_{1}^{*}\right) \cdot \Delta x+f\left(x_{2}^{*}\right) \Delta x+\cdots+f\left(x_{n}^{*}\right) \Delta x \tag{159}
\end{equation*}
$$

where

- n is the number of rectangles/subintervals.
- $\Delta x=(b-a) / n$.
- x_{k}^{*} is either the left/midpoint/right point of the k th subinterval depending on the type of Riemann sum we use.

We can write this in a compact form using "sigma-notation"

$$
\begin{equation*}
\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x \tag{160}
\end{equation*}
$$

More generally sigma-notation is simply shorthand for expressing a sum of numbers

$$
\begin{equation*}
\sum_{k=1}^{n} g(k)=g(1)+g(2)+\cdots+g(n-1)+g(n) \tag{161}
\end{equation*}
$$

There are n terms on the right hand side.
Example 2.74. Evaluate the sum $\sum_{k=1}^{3} k^{2}$.
More generally, there is a formula for this sum

$$
\begin{equation*}
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{162}
\end{equation*}
$$

(If you like you can check this for small values of n.)

We can now make this idea precise that Riemann sums approximate areas.
Definition 2.75. The definite integral of f from $x=a$ to $x=b$ (if it exists) is the limit of a Riemann sum approximation as the number of subintervals n approaches ∞. That is

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x . \tag{163}
\end{equation*}
$$

Example 2.76. Let's evaluate $\int_{1}^{2} x^{2} \mathrm{~d} x$ using the definition.
We will use the left Riemann sum approximation. For instance, when $n=4$ we have $\Delta x=1 / 4$ and the left Riemann sum is

$$
\begin{equation*}
1^{2} \cdot \frac{1}{4}+\left(\frac{5}{4}\right)^{2} \cdot \frac{1}{4}+\left(\frac{3}{2}\right)^{2} \cdot \frac{1}{4}+\left(\frac{7}{4}\right)^{2} \cdot \frac{1}{4} \tag{164}
\end{equation*}
$$

For general n we have the Riemann sum approximation

$$
\begin{aligned}
\sum_{k=1}^{n}\left(1+\frac{k}{n}\right)^{2} \frac{1}{n} & =\sum_{k=1}^{n} \frac{(n+k)^{2}}{n^{3}} \\
& =\sum_{k=1}^{n}\left(\frac{1}{n}+\frac{2 k}{n^{2}}+\frac{k^{2}}{n^{3}}\right) \\
& =1+\frac{n+1}{n}+\frac{n(n+1)(2 n+1)}{6 n^{3}} .
\end{aligned}
$$

Taking $n \rightarrow \infty$ we obtain

$$
\begin{equation*}
1+1+\frac{1}{3}=\frac{7}{3} \tag{165}
\end{equation*}
$$

