We've introduced the definite integral

$$
\begin{equation*}
\int_{a}^{b} f(t) \mathrm{d} t \tag{166}
\end{equation*}
$$

as the net area under between the graph $y=f(t)$ and the t-axis between $t=a$ to $t=b$. A precise definition was given in terms of a limit of Riemann sums.

Let's imagine fixing a function $f(t)$ and a starting point $t=a$ of some interval. Then, we can express the net area between the graph $y=f(t)$ and the t-axis between $t=a$ and some variable number $t=x$ as

$$
\begin{equation*}
N(x)=\int_{a}^{x} f(t) \mathrm{d} t \tag{167}
\end{equation*}
$$

Notice that N is a function of x and not a function of the "dummy" variable t.
Example 2.77. Find the area function $N(x)$ determined by the function $f(t)=t$ and the number $a=-1$. Is $N(x)$ a differentiable function? If so, compare the derivative A^{\prime} to the original function f.

The example above is a simple illustration of a important theorem.
Theorem 2.78 (The fundamental theorem of calculus). Let $N(x)=\int_{a}^{x} f(t) \mathrm{d} t$ be the area function of the function f. Assume that f is continuous on the interval $[a, b]$. Then $N(x)$ is continuous on the interval $[a, b]$ and differentiable on the interval (a, b). Furthermore

$$
\begin{equation*}
N^{\prime}(x)=f(x) \tag{168}
\end{equation*}
$$

on this interval. In particular, $N(x)$ is an antiderivative for $f(x)$ on the interval $[a, b]$.

Here is a sketch of the proof. Let's look at small sub interval $[x, x+h]$ where h is a small number. The area between the graph $y=f(t)$ on this interval is

$$
\begin{equation*}
N(x+h)-N(x) . \tag{169}
\end{equation*}
$$

If we assume that f is approximately constant on this interval, then this quantity is approximately the area of a rectangle

$$
\begin{equation*}
N(x+h)-N(x) \approx h f(x) . \tag{170}
\end{equation*}
$$

Or, dividing by h we have

$$
\begin{equation*}
\frac{N(x+h)-N(x)}{h} \approx f(x) . \tag{171}
\end{equation*}
$$

This line of reasoning can be turned into a proof that

$$
\begin{equation*}
N^{\prime}(x)=\lim _{h \rightarrow 0} \frac{N(x+h)-N(x)}{h}=f(x) . \tag{172}
\end{equation*}
$$

Because $N(x)$ is an antiderivative for $f(x)$ we know that any other antiderivative $F(x)$ of $f(x)$ differs by a constant

$$
\begin{equation*}
F(x)=N(x)+C . \tag{173}
\end{equation*}
$$

Of course, $N(a)=0$, so that $C=F(a)$. In particular we obtain the following important corollary.
Corollary 2.79. Suppose f is continuous on the interval $[a, b]$ and that $F(x)$ is an antiderivative for f on this interval. Then $N(b)=F(b)-F(a)$-equivalently, we have

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) \tag{174}
\end{equation*}
$$

It will be useful to introduce the following notation

$$
\begin{equation*}
\left.F(x)\right|_{a} ^{b}=F(b)-F(a), \tag{175}
\end{equation*}
$$

so that the above result can be written as

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\left.F(x)\right|_{a} ^{b} . \tag{176}
\end{equation*}
$$

Example 2.80. Evaluate

$$
\begin{equation*}
\int_{0}^{3} e^{2 x} \mathrm{~d} x \tag{177}
\end{equation*}
$$

Example 2.81. Evaluate

$$
\begin{equation*}
\int_{0}^{4} \frac{1}{4+x^{2}} \mathrm{~d} x \tag{178}
\end{equation*}
$$

