Last time we reviewed the most important theorem in calculus. The fundamental theorem states that if f is a continuous function then

$$
\begin{equation*}
N^{\prime}(x)=f(x) \tag{177}
\end{equation*}
$$

where $N(x)=\int_{a}^{x} f(x) \mathrm{d} x$ is the net area function corresponding to f. Equivalently, this can be written as

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{a}^{x} f(x) \mathrm{d} x=f(x) \tag{178}
\end{equation*}
$$

As a consequence, $N(x)=\int_{a}^{x} f(x) \mathrm{d} x$ is an antiderivative of the function f. From this we deduce that if $F=\int f(x) \mathrm{d} x$ (this is the indefinite integral symbol) is any other antiderivative of f then

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-\left.F(a) \stackrel{\text { def }}{=} F(x)\right|_{a} ^{b} . \tag{179}
\end{equation*}
$$

Example 2.80. Evaluate

$$
\begin{equation*}
\int_{0}^{3} e^{2 x} \mathrm{~d} x \tag{180}
\end{equation*}
$$

Example 2.81. Evaluate

$$
\begin{equation*}
\int_{0}^{1} \frac{1}{3+3 x^{2}} \mathrm{~d} x \tag{181}
\end{equation*}
$$

It's a good time to study some properties of the definite integral.

- For any continuous function f and a any number, one has

$$
\begin{equation*}
\int_{a}^{a} f(x) \mathrm{d} x=0 \tag{182}
\end{equation*}
$$

This is because the net area is clearly zero as the width of the interval is null.

- For any continuous function f and numbers $a<b<c$ one has

$$
\begin{equation*}
\int_{a}^{c} f(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{b}^{c} f(x) \mathrm{d} x . \tag{183}
\end{equation*}
$$

Geometrically this is just partitioning the region of integration into two smaller regions.

One thing we've sort of taken for granted is that $\int_{a}^{b} f(x) \mathrm{d} x$ is defined when $a<b$ (using the definition in terms of net area). It's easy to extend this more generally.

- For any continuous function f an numbers $a<b$ one has

$$
\begin{equation*}
\int_{b}^{a} f(x) \mathrm{d} x=-\int_{a}^{b} f(x) \mathrm{d} x \tag{184}
\end{equation*}
$$

One can take this as a definition.

- For any two functions f, g one has

$$
\begin{equation*}
\int_{a}^{b}(f(x)+g(x)) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{a}^{b} g(x) \mathrm{d} x \tag{185}
\end{equation*}
$$

- For any constant c one has

$$
\begin{equation*}
\int_{a}^{b} c f(x) \mathrm{d} x=c \int_{a}^{b} f(x) \mathrm{d} x \tag{186}
\end{equation*}
$$

Example 2.82. Compute

$$
\begin{equation*}
\int_{1}^{2}\left(x^{2}+3 x-1\right) \mathrm{d} x \tag{187}
\end{equation*}
$$

Let's give a formal proof of the fundamental theorem. Let $N(x) \int_{a}^{x} f(x) \mathrm{d} x$ be the net area function, then its derivative, by definition, is

$$
\begin{equation*}
N^{\prime}(x)=\lim _{h \rightarrow 0} \frac{N(x+h)-N(x)}{h} . \tag{188}
\end{equation*}
$$

Using formal properties of integrals we have the following relation

$$
\begin{equation*}
N(x+h)-N(x)=\int_{a}^{x+h} f(x) \mathrm{d} x-\int_{a}^{x} f(x) \mathrm{d} x=\int_{x}^{x+h} f(x) \mathrm{d} x . \tag{189}
\end{equation*}
$$

Let $m(x), M(x)$ be the minimum and maximum values of f on the small interval $[x, x+h]$. (These exist by the extreme value theorem.) Then

$$
\begin{equation*}
m(x) \cdot h \leq \int_{x}^{x+h} f(x) \mathrm{d} x \leq M(x) \cdot h \tag{190}
\end{equation*}
$$

Or equivalently using (188) we obtain

$$
\begin{equation*}
m(x) \leq \frac{N(x+h)-N(x)}{h} \leq M(x) . \tag{191}
\end{equation*}
$$

By the squeeze theorem we can take the limit of this expression as $h \rightarrow 0$. Indeed, since f is continuous, both $m(x), M(x)$ approach $f(x)$ as $h \rightarrow 0$. In particular, the derivative of $N(x)$ exists and $N^{\prime}(x)=f(x)$ as desired.

Example 2.83 . Simplify the following expression

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{1}^{x^{3}} e^{x^{2}} \mathrm{~d} x \tag{192}
\end{equation*}
$$

(Use the fundamental theorem, do not try to find the antiderivative.)

