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Another optimization problem.

Example 2.46. A fence that is 6 feet high is running parallel to a house and is 3 feet
away from the house. What is the minimum length of a ladder which clears the
fence and touches the house?
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Let’s denote by x the distance, in feet, from the base of the ladder to the fence.
Then the length between the base of the ladder and the house is x + 3. Let y be the
height from the top of the ladder to the ground. Then, the length of the ladder `
can be computed as

(110) `2 = (x + 3)2 + y
2.

The quantities x, y are related by the following geometric constraint. Using sim-
ilar triangles we see that we have
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.

In other words, y = 6(x+3)
x

.

We can use this to express the length of the ladder just in terms of the quantity x
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We want to minimize the function L(x) = `(x)2.

The first derivative is
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We have potential critical points at x = �3 and x = 3
p

108 = 3 3
p

4. The point
x = �3 is not meaningful since x > 0 represents a length. Therefore we have only
one critical point!

By computing L
00(3 3

p
4) > 0 (or using the first derivative test) we see that this is

a local, hence absolute, minimum.
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