Another optimization problem.
Example 2.46. A fence that is 6 feet high is running parallel to a house and is 3 feet away from the house. What is the minimum length of a ladder which clears the fence and touches the house?

Let's denote by x the distance, in feet, from the base of the ladder to the fence. Then the length between the base of the ladder and the house is $x+3$. Let y be the height from the top of the ladder to the ground. Then, the length of the ladder ℓ can be computed as

$$
\begin{equation*}
\ell^{2}=(x+3)^{2}+y^{2} . \tag{110}
\end{equation*}
$$

The quantities x, y are related by the following geometric constraint. Using similar triangles we see that we have

$$
\begin{equation*}
\frac{y}{x+3}=\frac{6}{x} \tag{111}
\end{equation*}
$$

In other words, $y=\frac{6(x+3)}{x}$.
We can use this to express the length of the ladder just in terms of the quantity x

$$
\begin{equation*}
\ell(x)^{2}=(x+3)^{2}+\frac{36}{x^{2}}(x+3)^{2}=(x+3)^{2}\left(1+\frac{36}{x^{2}}\right) \tag{112}
\end{equation*}
$$

We want to minimize the function $L(x)=\ell(x)^{2}$.
The first derivative is

$$
\begin{aligned}
L^{\prime}(x) & =2(x+3)\left(1+\frac{36}{x^{2}}\right)+(x+3)^{2}\left(-\frac{72}{x^{3}}\right) \\
& =(x+3)\left(2\left(1+36 / x^{2}\right)-(x+3)\left(72 / x^{3}\right)\right) \\
& =(x+3)\left(2+72 / x^{2}-72 / x^{3}-216 / x^{3}\right) \\
& =(x+3)\left(2-216 / x^{3}\right) .
\end{aligned}
$$

We have potential critical points at $x=-3$ and $x=\sqrt[3]{108}=3 \sqrt[3]{4}$. The point $x=-3$ is not meaningful since $x>0$ represents a length. Therefore we have only one critical point!

By computing $L^{\prime \prime}(3 \sqrt[3]{4})>0$ (or using the first derivative test) we see that this is a local, hence absolute, minimum.

