NOVEMBER 7, 2022

If we zoom in, the line tangent to a graph of a smooth function closely approximates the original function. Assume that f is smooth on an interval containing x = a. The slope of the line tangent to the curve y = f(x) at the point (a, f(a)) is f'(a). The equation of a line tangent to the graph at this point, in slope intercept form, is

(113)
$$y - f(a) = f'(a)(x - a)$$

or

(114)
$$y = f(a) + f'(a)(x - a).$$

Let

(115)
$$L_a(x) = f(a) + f'(a)(x-a)$$

be the function describing this line. Then, we say that that $L_a(x)$ is the linear approximation of f(x) near x = a and will often write

(116)
$$f(x) \approx L(x)$$

for *x* near *a*.

Example 2.47. Find the linear approximation for the function $f(x) = \ln x$ and use it to approximate $\ln(1.1)$.

Example 2.48. Find the linear approximation of $f(x) = \tan^3(x)$ and use it to approximate $\tan(11\pi/40)$. (Notice that $11/40 \approx 1/4$.)

We are trying to approximate the value of the function $f(x) = \tan^3(x)$ near $x = \pi/4$. The derivative is

(117)
$$f'(x) = 3\tan^2(x)\sec^2(x).$$

The line y = L(x) tangent to the graph at $x = \pi/4$ is (118) $L(x) - f(\pi/4) = f'(\pi/4)(x - \pi/4).$

Let's record the relevant values of the function and the derivative:

(119) $f(\pi/4) = 1$, $f'(\pi/4) = 3 \cdot 1 \cdot (\sqrt{2})^2 = 6$. So plugging all of this in: (120) $L(x) = 6(x - \pi/4) + 1$. Let's move on to L'Hôpital's rule. The most basic application of this rule is to compute limits of the following form

(121)
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

where f(a) = g(a) = 0.

If f, g are continuous and differentiable functions near x = a, we can use a linear approximation to compute either of the limits $\lim_{x\to a} f(x)$ or $\lim_{x\to a} g(x)$. Take f(x) for example: near x = a we have seen that f(x) is approximated by the linear function

(122)
$$L_f(x) = f(a) + f'(a)(x-a).$$

Notice that

(123)
$$\lim_{x \to a} f(x) = \lim_{x \to a} L(x) = f(a).$$

Similarly, there is a linear function

(124)
$$L_g(x) = g(a) + g'(a)(x-a)$$

which approximates *g* near x = a.

We can attempt to use these approximations to compute the original limit $\lim_{x\to a} \frac{f(x)}{g(x)}$. Indeed, near x = a we have

(125)
$$\frac{f(x)}{g(x)} \approx \frac{L_f(x)}{L_g(x)} = \frac{f(a) + f'(a)(x-a)}{g(a) + g'(a)(x-a)}.$$

But the assumption was that g(a) = f(a) = 0, so

(126)
$$\frac{f(x)}{g(x)} \approx \frac{f'(a)(x-a)}{g'(a)(x-a)}$$

Notice that for $x \neq a$ we have shown that

(127)
$$\frac{f(x)}{g(x)} \approx \frac{f'(a)}{g'(a)}$$

One can turn this into the following theorem.

Theorem 2.49. Suppose that f, g are differentiable on an interval containing x = a and assume that $g'(x) \neq 0$ on this interval for $x \neq a$. Also, assume that $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$. Then

(128)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$