NOVEMBER 9, 2022

We continue with L'Hôpital's rule. Recall that the first indeterminate form '0/0' that we can apply this rule to can be carefully stated as follows.

Theorem 2.50. Suppose that f, g are differentiable on an interval containing x = a and assume that $g'(x) \neq 0$ on this interval for $x \neq a$. Also, assume that $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$. Then

(129)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Example 2.51. Evaluate the limit if it exists

(130)
$$\lim_{x \to 0} \frac{e^x - 1}{\sqrt{x^3 + 1} - 1}.$$

Let's now consider the indeterminate form ∞/∞ .

Theorem 2.52. Suppose that f, g are differentiable on an open interval containing a with $g'(x) \neq 0$ for $x \neq a$ on this interval. If $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$, then

(131)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Notice that this is the same conclusion as in the other indeterminate form 0/0.

We can use this to alternatively compute some familiar limits.

Example 2.53. Compute the limit using L'Hôpital's rule

(132)
$$\lim_{x \to \infty} \frac{x^3 + 3}{2x^3 + x^2 + 1}$$

Let's now move onto an example that isn't immediately in one of the indeterminate forms above.

Example 2.54. Compute the limit if it exists (133) $\lim_{x \to 0^+} x \cdot \ln x.$

Notice that naively plugging in 0 (or really a small positive number) we will get the indeterminate form $0 \cdot (-\infty)$. To do this example we rewrite the function as

$$x\ln x = \frac{\ln x}{1/x}.$$

Note that now we have put this in the indeterminate form $-\infty/\infty$, so we can apply the rule.

(135)
$$\lim_{x \to 0^+} x \cdot \ln x = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = -\lim_{x \to 0^+} x = 0.$$

Example 2.55. Evaluate

(136) $\lim_{x\to\infty}\frac{\ln x}{x}.$

The above limits suggest insight into the 'growth rate' of functions. We say that a function g grows faster than a function f if

(137)
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

Equivalently, $\lim_{x\to\infty} g(x)/f(x) = \infty$. We say that the growth rates of f, g are comparable if the limit $\lim_{x\to\infty} f(x)/g(x)$ is a finite nonzero number.

Example 2.56. In the last example, we saw that x grows faster than $\ln x$.

- *Example* 2.57. Are there any p, q > 0 such that $(\ln x)^p$ and x^q have comparable growth?
 - Are there any p, q > 0 such that e^{px} and x^q have comparable growth?