We continue with L'Hôpital's rule. Recall that the first indeterminate form ' $0 / 0$ ' that we can apply this rule to can be carefully stated as follows.

Theorem 2.50. Suppose that f, g are differentiable on an interval containing $x=a$ and assume that $g^{\prime}(x) \neq 0$ on this interval for $x \neq a$. Also, assume that $\lim _{x \rightarrow a} f(x)=$ $\lim _{x \rightarrow a} g(x)=0$. Then

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} . \tag{129}
\end{equation*}
$$

Example 2.51. Evaluate the limit if it exists

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{\sqrt{x^{3}+1}-1} \tag{130}
\end{equation*}
$$

Let's now consider the indeterminate form ∞ / ∞.
Theorem 2.52. Suppose that f, g are differentiable on an open interval containing a with $g^{\prime}(x) \neq 0$ for $x \neq a$ on this interval. If $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$, then

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} . \tag{131}
\end{equation*}
$$

Notice that this is the same conclusion as in the other indeterminate form $0 / 0$.
We can use this to alternatively compute some familiar limits.
Example 2.53. Compute the limit using L'Hôpital's rule

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x^{3}+3}{2 x^{3}+x^{2}+1} \tag{132}
\end{equation*}
$$

Let's now move onto an example that isn't immediately in one of the indeterminate forms above.

Example 2.54. Compute the limit if it exists

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} x \cdot \ln x . \tag{133}
\end{equation*}
$$

Notice that naively plugging in 0 (or really a small positive number) we will get the indeterminate form $0 \cdot(-\infty)$. To do this example we rewrite the function as

$$
\begin{equation*}
x \ln x=\frac{\ln x}{1 / x} \tag{134}
\end{equation*}
$$

Note that now we have put this in the indeterminate form $-\infty / \infty$, so we can apply the rule.

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} x \cdot \ln x=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=-\lim _{x \rightarrow 0^{+}} x=0 . \tag{135}
\end{equation*}
$$

Example 2.55. Evaluate

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} \tag{136}
\end{equation*}
$$

The above limits suggest insight into the 'growth rate' of functions. We say that a function g grows faster than a function f if

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0 . \tag{137}
\end{equation*}
$$

Equivalently, $\lim _{x \rightarrow \infty} g(x) / f(x)=\infty$. We say that the growth rates of f, g are comparable if the limit $\lim _{x \rightarrow \infty} f(x) / g(x)$ is a finite nonzero number.
Example 2.56. In the last example, we saw that x grows faster than $\ln x$.
Example 2.57. - Are there any $p, q>0$ such that $(\ln x)^{p}$ and x^{q} have comparable growth?

- Are there any $p, q>0$ such that $e^{p x}$ and x^{q} have comparable growth?

